
QoS-Aware Management
of Monotonic Service Orchestrations

A 5 years project, jointly developed with A. Benveniste and 2 PhDs at
IRISA/INRIA, in collaboration with Misra’s group in Austin UT

June 22, 2012

Claude Jard () keynote – GPL2012 June 22, 2012 1 / 42

Introduction

Wide-area computing

I Services are building blocks for creating open distributed applications

I Services may be composed together to form new services
(orchestrations, choreographies)

I Importance of contracts in an open world (SLAs), including non
functional aspects (latency, security, cost, ...)

I Managing business processes over a Web infrastructure

I The example of ORC programming language (J. Misra, Austin), as an
clean alternative of BPEL

Claude Jard () keynote – GPL2012 June 22, 2012 2 / 42

Introduction

Typical example

I A typical example alike travel services: a service is composed by
reusing existing services exposed by other providers seen as
sub-contractors.

I Garantees must be offered:
I Functional: the composed service shall offer what it is supposed to
I QoS: with some agreed security and performance (SLA)

Claude Jard () keynote – GPL2012 June 22, 2012 3 / 42

Introduction

Small example in a Petri net style

SubmitOrder(location, budget)

best(cost)

Company1 Company2

HotelA HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I Data-dependent workflow

I Multi-dimensional QoS

Claude Jard () keynote – GPL2012 June 22, 2012 4 / 42

Introduction

Small example in a Petri net style

SubmitOrder(location, budget)

best(cost)

Company1 Company2

best(cost, cat)

HotelA HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I Data-dependent workflow

I Multi-dimensional QoS

Claude Jard () keynote – GPL2012 June 22, 2012 5 / 42

Introduction

QoS analysis (quite different from networks)

I Combining transactional Web services
I Seen as “black-” or “grey-boxes”, exposed through their semantically

rich interface (WSDL++,WSLA++, ...)
I Infrastructure-agnostic (SOAP, REST)

I Semi-open world
I Typically professional
I Extranet, E-enterprise, E-business
I Business management
I Good balance btw fubnctionality, security, safety/correctness, and QoS

I Tangency with automation management, and, to a lesser extent,
manufacturing systems design

I a world of contracts

Claude Jard () keynote – GPL2012 June 22, 2012 6 / 42

Introduction

Outline

Introduction

Monotonicity in QoS

QoS computation

Implementation in ORC

Soft contracts

Monitoring

Conclusion

Claude Jard () keynote – GPL2012 June 22, 2012 7 / 42

Monotonicity in QoS

Monotonicity

Implicit assumption in contract-based management:

QoS improvements in component services can only be better for the
composite service.

I Can be false...

Claude Jard () keynote – GPL2012 June 22, 2012 8 / 42

Monotonicity in QoS

Non monotonicity

SubmitOrder(location, budget)

best(cost)

10Company1 20 Company2

10HotelA 20 HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I End-to-end cost = 20

Claude Jard () keynote – GPL2012 June 22, 2012 9 / 42

Monotonicity in QoS

Non monotonicity

SubmitOrder(location, budget)

best(cost)

10Company1 5 Company2

10HotelA 20 HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I Cost of Company2 has been improved to 5

I End-to-end cost = 25 is worse!

Claude Jard () keynote – GPL2012 June 22, 2012 10 / 42

Monotonicity in QoS

Theorems

I Loose monotonicity: considering maximum QoS for all possible
branching choices ensures monotonicity. May lead in practice to very
pessiministic QoS estimations.

I Computing branching cells (by unfolding) allows for detection of non
monotonicity. Monotonicity is undecidable in general.

I A syntactical sufficient condition for monotonicity is that, each time
branching has occurred in net N, a join occurs right after.

Claude Jard () keynote – GPL2012 June 22, 2012 11 / 42

QoS computation

QoS domain

I Partially ordered domain Q = (D,≤,⊕, /) that is a complete upper
lattice (the least upper bound operator ∨ meaning taking the “worst”
QoS and is used during synchronization)

I Operator ⊕ : D×D→ D captures how a transition increments the
QoS value. ⊕ must be monotonic w.r.t. ≤

I Competition function / : D×D∗ → D (must be also monotonic)

Claude Jard () keynote – GPL2012 June 22, 2012 12 / 42

QoS computation

Examples of QoS domains

I Latency: Q = (R+,≤,+, /) where d1 / d2 = d1 (the winner is the
first arrived)

I Security: Q = ({low,high}, high ≤ low,∨, /)

I Cost: Q = ({1} → N,⊆,+, /)

I Composite QoS (product): Q = ((D1,D1),≤1 × ≤2,+, (/1, /2))
I Composite QoS (priority): suppose Q1 is security and Q2 is latency.

I ≤ is the lexicographic order from (≤1,≤2)
I (s, d) / (s ′, d ′) = if d ≤ d ′ and s = low then (s, d ′) else (s, d) (wait is

needed to decide who wins the competition)

Claude Jard () keynote – GPL2012 June 22, 2012 13 / 42

QoS computation

QoS computation

q1 q2

δt δt′

q′ q”

I Tokens bring the QoS information

I If ((q1 ∨ q2)⊕ δt) ≤ (q2 ⊕ δt′) then t fires and
q′ = ((q1 ∨ q2)⊕ δt) / (q2 ⊕ δt′)

I If ((q1 ∨ q2)⊕ δt) ≥ (q2 ⊕ δt′) then t ′ fires and
q” = (q2 ⊕ δt′) / ((q1 ∨ q2)⊕ δt)

I Else choose non deterministically to fire t or t ′

Claude Jard () keynote – GPL2012 June 22, 2012 14 / 42

Implementation in ORC

ORC (Misra’s group at Austin UT)

I Sites: the fundamental unit of computation. Similar to functions but
may be remote and therefore unreliable. Publishes the value returned
by the site.

I Combinators: only four:
I do f and g in parallel: f | g
I for all x from f do g (sequential composition): f >x> g
I for some x from g do f (pruning): f <x< g
I if f completes without publishing do g (otherwise): f ; g

I functions

I a lot of built-in sites

Claude Jard () keynote – GPL2012 June 22, 2012 15 / 42

Implementation in ORC

Symmetric composition f | g

I Evaluate f and g independently

I Publish all values from both

I No direct communication of interaction between f and g . They can
communicate only through sites.

I Example:
CNN(d) | BBC (d)

returns 0, 1 or 2 values.

Claude Jard () keynote – GPL2012 June 22, 2012 16 / 42

Implementation in ORC

Sequential composition f >x> g

I For all values published by f do g

I Publish only the values from g

I Example:
CNN(d) >x> Email(address, x)

I Example:

(CNN(d) | BBC (d)) >x> Email(address, x)

may call Email twice.

Claude Jard () keynote – GPL2012 June 22, 2012 17 / 42

Implementation in ORC

Pruning f <x< g

I Evaluate f and g in parallel. Site calls that need x are suspended.

I Example:
(M() | N(x)) <x< g

I When g returns a (first) value, bind the value to x , terminate g and
resume suspended calls.

I Example:

Email(address, x) <x< (CNN(d) | BBC (d))

sends at most one email.

Claude Jard () keynote – GPL2012 June 22, 2012 18 / 42

Implementation in ORC

Fork-join parallelism

I Call M and N in parallel

I Return their values as a tuple after both respond

I Example:
((u, v) < u < M()) < v < N()

Claude Jard () keynote – GPL2012 June 22, 2012 19 / 42

Implementation in ORC

Otherwise f ; g

Do f . If f completes without publishing then do g .

I An expression completes if its execution can take no more steps, and
all called sites have either responded, or will never respond.

I All library sites in ORC are helpful (indicate if they halt).

I Example:

(h >x> println(x) � ift(false)) ; ”done”

I Example: print all publications of h. When h completes, publish
“done”.

Claude Jard () keynote – GPL2012 June 22, 2012 20 / 42

Implementation in ORC

Concurrent function calls

def Metronome() = signal | (Rwait(1000) � Metronome())

(Metronome() � ”tick”) | (Rwait(500) � Metronome() � ”tock”)

Claude Jard () keynote – GPL2012 June 22, 2012 21 / 42

Implementation in ORC

Causality and QoS

Goal:

I Specified as an ORC program transformation: P → P ′

I P ′ behaves as P, but produces extra information about causality and
QoS

Approach:

I Events in ORC are site calls (and returns) and publications (including
intermediate ones)

I The idea is to instrument each event e with causal and QoS
additional information: (e, pre(e), q(e))

Claude Jard () keynote – GPL2012 June 22, 2012 22 / 42

Implementation in ORC

Causality tracking as a basis for QoS computation

Original program P
("The winner is " + x) <x< (Prompt("?") | Prompt("?"))

Transformed program P’
(x>(vx,)>
("The winner is " + vx,("The winner is ",[]):[x]))

<x< ((("Prompt",[])>u1>Prompt("?")>w1>(w1,[u1])) |

(("Prompt",[])>u2>Prompt("?")>w2>(w2,[u2])))

Claude Jard () keynote – GPL2012 June 22, 2012 23 / 42

Implementation in ORC

Example of response times
("The winner is Claude", [("The winner is ", []),

("Claude", [("Prompt", [])])])

"The winner is ", d0 "Prompt ", d1

"Claude", d2

"The winner is Claude", max(d0,d1+d2)

Claude Jard () keynote – GPL2012 June 22, 2012 24 / 42

Implementation in ORC

The ORC calculus

v ∈ Value
x , x1, . . . , xn ∈ Variable
f , g ∈ Expression ::= v x x(x1, . . . , xn) f | g

f >x> g f <x< g f ; g
def x(x1, . . . , xn) = fg

Claude Jard () keynote – GPL2012 June 22, 2012 25 / 42

Implementation in ORC

Transformation rules for causality

[[v]]c → (v , c)
[[x]]c → (v , {x} ∪ c) <(v ,)< x {- v fresh -}

– function call {- v1, c1, . . . , vn, cn fresh -}
[[x(x1, . . . , xn)]]c → x((v1, c1 ∪ c) < (v1, c1) < x1, . . . ,

(vn, cn ∪ c) < (vn, cn) < xn)
– site call {- v1, c1, . . . , vn, cn,Y , u, v

′ fresh -}
[[x(x1, . . . , xn)]]c → ((x ,

⋃
1≤i≤n ci ∪ c) >u> x(v1, . . . , vn)

>(v ′,Y)> (v ′,Y ∪ {u}))
<(v1, c1)< x1 . . . <(vn, cn)< xn

[[f | g]]c → [[f]]c | [[g]]c
[[f >x> g]]c → [[f]]c >x> [[g]]{x}
[[f <x< g]]c → [[f]]c <x< [[g]]c

[[def x(x1, . . . , xn) = fg]]c → def x(x1, . . . , xn) = [[f]]c [[g]]c

Claude Jard () keynote – GPL2012 June 22, 2012 26 / 42

Implementation in ORC

The otherwise operator: tracking halts

All events inside the scope of the f ; g operator are recorded in a buffer.
When f halts, they form the causes of the halting event h, cause of g .

val trace = Buffer()
def max([], u) = trace.put(u)
def max(m : ms, (x , px)) = if member(m, px) then signal

else trace.put(m)) � max(ms, (x , px))
def record(u) = trace.getAll() >ms> max(ms, u)
def track(u) = (u, record(u)) > (y ,) > y

[[f ; g]]c → [[f]]c ; track((”h”, trace.getAll())) >x> [[g]]{x}
−x fresh

Claude Jard () keynote – GPL2012 June 22, 2012 27 / 42

Implementation in ORC

Extension with QoS
Consider the general case of composite QoS domain, which is partially
ordered

Q = (Dq,≤q,⊕q)

I Each event is equipped with a QoS increment value

e = ((v , q,Q), pre(e))

I The associated QoS may be recursively computed using the causal
past

Q(e) =

 ∨
e′∈pre(e)

Q(e ′)

︸ ︷︷ ︸

synchronizing the causes

⊕ q(e)︸︷︷︸
increment

Claude Jard () keynote – GPL2012 June 22, 2012 28 / 42

Implementation in ORC

Extending ORC with a best QoS pruning operator: solving
conflicts by QoS competition
New pruning operator Demands in general to wait for all the first
publications of g

f <x<q g

Q = (Dq,≤q,⊕q,Cq)

I Direct conflicts are recorded with the event

e = ((v , q,Q)pre(e), directconflicts(e))

I Used in the QoS computation

Q(e) =

 ∨
e′∈pre(e)

Q(e ′)

 ⊕q q(e)

C
(
Q(e ′) | e ′ ∈ #(e)

)
Claude Jard () keynote – GPL2012 June 22, 2012 29 / 42

Implementation in ORC

Implementation: the principles

I Separate description of the composite QoS domain and its related
algebra

I The original ORC program is then weaved (instrumented) with the
QoS description

I Publications of the weaved program contain the QoS information
I Use of XML/OIL intermediate form

I This form is parsed and printed using SCALA functions
I Rules are implemented using ORC expressions and sites implemented in

SCALA
I The ORC engine executes the transformed OIL program

Claude Jard () keynote – GPL2012 June 22, 2012 30 / 42

Implementation in ORC

SLA description in ORC

Claude Jard () keynote – GPL2012 June 22, 2012 31 / 42

Soft contracts

QoS contracts cannot rely on hard bounds

I Why not a soft bound, covering 95% of the cases?

I Unfortunately, such contracts do not compose

I Idea: a contract is a probability distribution

Claude Jard () keynote – GPL2012 June 22, 2012 32 / 42

Soft contracts

Probabilistic contracts

I The contract consists of a probability distribution
I Probas compose well:

I use Max-Plus probabilistic algebra if the control is deterministic
I otherwise run Monte-Carlo simulations

I QoS distributions can result
I from contracts
I from measurements

Claude Jard () keynote – GPL2012 June 22, 2012 33 / 42

Soft contracts

Probabilistic contracts in practice

To make it practical, we
can define probabilistic
contracts by specifying
only a finite set of
quantiles

(expressible in WSLA)

Claude Jard () keynote – GPL2012 June 22, 2012 34 / 42

Monitoring

Statistical monitoring

I The specified contract F (x) = Pr(δ ≤ x) (probability density)
I A distribution G (x) breaching the contract, meaning that

I ¬(G ≥S F), where ≥S denotes stochastic dominance
(∀x ,G (x) ≥ F (x))

I G is unknown: it is observed. How to perform on-line detection of the
contract violation?

Claude Jard () keynote – GPL2012 June 22, 2012 35 / 42

Monitoring

On-line detection

I Actual test running with t: supx [F (x)− G[t,t+N](x)] ≥ λ
I G[t,t+N](x) empirical distribution function based on [t, t + N]

λ: needs calibration	

I Calibration is performed by bootstrapping:
1. Build large training data set (Monte-Carlo simulation of contract

distribution)
2. Resample it many times by selecting N−size trials
3. Tune λ so that 95% of trials are accepted

Claude Jard () keynote – GPL2012 June 22, 2012 36 / 42

Conclusion

Conclusion

Web services orchestrations or choreographies are a world of
contracts

I SLA: function & QoS jointly

I The paradigm of contracts (composition, monitoring, reconfiguration)
I Novel issues

I Function: workflow & data
I QoS: monotonicity
I QoS: soft contracts

Claude Jard () keynote – GPL2012 June 22, 2012 37 / 42

Conclusion

Conclusion

We have proposed a comprehensive approach

I QoS algebra

I Probabilistic soft contracts

I Contract composition

I Statistical contract monitoring

I Reconfiguration?

A mix of techniques

I Formal concurrent models for orchestrations (ORC, Petri nets)

I Monte-Carlo simulation

I Bootstrap methods from statistics

Claude Jard () keynote – GPL2012 June 22, 2012 38 / 42

Conclusion

Thank you

Questions?

QuestionA QuestionB

q=stupid
yes no

Answer Answer+ Please
Repeat

Ask
Colleagues

Ask more
Colleagues

mux

min min

merge

Response

q

c

i p

Timeout Timeout

Claude Jard () keynote – GPL2012 June 22, 2012 39 / 42

Conclusion

References I

Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, and
John A. Thywissen.
Qos-aware management of monotonic service orchestrations.
Under submission, 2012.

Sidney Rosario, Albert Benveniste, and Claude Jard.
Flexible probabilistic qos management of orchestrations.
International Journal of Web Services Research, 2, 2010.

Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard.
Probabilistic qos and soft contracts for transaction-based web services
orchestrations.
IEEE Transactions on Services Computing, 1(4):187–200, 2008.

Claude Jard () keynote – GPL2012 June 22, 2012 40 / 42

Conclusion

References II

Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and
Claude Jard.
Pairwise testing of dynamic composite services.
In 6th international symposium on Software engineering for adaptive
and self-managing systems (SEAMS), SEAMS ’11, pages 138–147,
New York, NY, USA, 2011. ACM.

Ajay Kattepur.
Importance sampling of probabilistic contracts in web services.
In 9th International Conference on Service-Oriented Computing
(ICSOC), pages 557–565. Springer, 2011.

Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and
Claude Jard.
Variability modeling and qos analysis of web services orchestrations.
In ICWS, pages 99–106. IEEE Computer Society, 2010.

Claude Jard () keynote – GPL2012 June 22, 2012 41 / 42

Conclusion

References III

Sidney Rosario, Albert Benveniste, and Claude Jard.
Monitoring probabilistic slas in web service orchestrations.
In IFIP/IEEE Intern. Symposium on Integrated Network Management,
Mini-conference. IEEE, June 2009.

Sidney Rosario, Albert Benveniste, and Claude Jard.
Probabilistic qos management of transaction based web services
orchestrations.
In IEEE 7th International Conference on Web Services (ICWS 2009).
IEEE, July 2009.

Claude Jard () keynote – GPL2012 June 22, 2012 42 / 42

	Introduction
	Monotonicity in QoS
	QoS computation
	Implementation in ORC
	Soft contracts
	Monitoring
	Conclusion

