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Introduction

Wide-area computing

I Services are building blocks for creating open distributed applications

I Services may be composed together to form new services
(orchestrations, choreographies)

I Importance of contracts in an open world (SLAs), including non
functional aspects (latency, security, cost, ...)

I Managing business processes over a Web infrastructure

I The example of ORC programming language (J. Misra, Austin), as an
clean alternative of BPEL
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Introduction

Typical example

I A typical example alike travel services: a service is composed by
reusing existing services exposed by other providers seen as
sub-contractors.

I Garantees must be offered:
I Functional: the composed service shall offer what it is supposed to
I QoS: with some agreed security and performance (SLA)
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Introduction

Small example in a Petri net style

SubmitOrder(location, budget)

best(cost)

Company1 Company2

HotelA HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I Data-dependent workflow

I Multi-dimensional QoS
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Introduction

Small example in a Petri net style

SubmitOrder(location, budget)

best(cost)

Company1 Company2

best(cost, cat)

HotelA HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I Data-dependent workflow

I Multi-dimensional QoS
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Introduction

QoS analysis (quite different from networks)

I Combining transactional Web services
I Seen as “black-” or “grey-boxes”, exposed through their semantically

rich interface (WSDL++,WSLA++, ...)
I Infrastructure-agnostic (SOAP, REST)

I Semi-open world
I Typically professional
I Extranet, E-enterprise, E-business
I Business management
I Good balance btw fubnctionality, security, safety/correctness, and QoS

I Tangency with automation management, and, to a lesser extent,
manufacturing systems design

I a world of contracts
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Monotonicity in QoS

Monotonicity

Implicit assumption in contract-based management:

QoS improvements in component services can only be better for the
composite service.

I Can be false...
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Monotonicity in QoS

Non monotonicity

SubmitOrder(location, budget)

best(cost)

10Company1 20 Company2

10HotelA 20 HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I End-to-end cost = 20
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Monotonicity in QoS

Non monotonicity

SubmitOrder(location, budget)

best(cost)

10Company1 5 Company2

10HotelA 20 HotelB

enough budget?

Invoice Resubmit(budget)

best(latency)

Timeout

I Cost of Company2 has been improved to 5

I End-to-end cost = 25 is worse!
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Monotonicity in QoS

Theorems

I Loose monotonicity: considering maximum QoS for all possible
branching choices ensures monotonicity. May lead in practice to very
pessiministic QoS estimations.

I Computing branching cells (by unfolding) allows for detection of non
monotonicity. Monotonicity is undecidable in general.

I A syntactical sufficient condition for monotonicity is that, each time
branching has occurred in net N, a join occurs right after.
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QoS computation

QoS domain

I Partially ordered domain Q = (D,≤,⊕, /) that is a complete upper
lattice (the least upper bound operator ∨ meaning taking the “worst”
QoS and is used during synchronization)

I Operator ⊕ : D×D→ D captures how a transition increments the
QoS value. ⊕ must be monotonic w.r.t. ≤

I Competition function / : D×D∗ → D (must be also monotonic)
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QoS computation

Examples of QoS domains

I Latency: Q = (R+,≤,+, /) where d1 / d2 = d1 (the winner is the
first arrived)

I Security: Q = ({low,high}, high ≤ low,∨, /)

I Cost: Q = ({1} → N,⊆,+, /)

I Composite QoS (product): Q = ((D1,D1),≤1 × ≤2,+, (/1, /2))
I Composite QoS (priority): suppose Q1 is security and Q2 is latency.

I ≤ is the lexicographic order from (≤1,≤2)
I (s, d) / (s ′, d ′) = if d ≤ d ′ and s = low then (s, d ′) else (s, d) (wait is

needed to decide who wins the competition)
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QoS computation

QoS computation

q1 q2

δt δt′

q′ q”

I Tokens bring the QoS information

I If ((q1 ∨ q2)⊕ δt) ≤ (q2 ⊕ δt′) then t fires and
q′ = ((q1 ∨ q2)⊕ δt) / (q2 ⊕ δt′)

I If ((q1 ∨ q2)⊕ δt) ≥ (q2 ⊕ δt′) then t ′ fires and
q” = (q2 ⊕ δt′) / ((q1 ∨ q2)⊕ δt)

I Else choose non deterministically to fire t or t ′
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Implementation in ORC

ORC (Misra’s group at Austin UT)

I Sites: the fundamental unit of computation. Similar to functions but
may be remote and therefore unreliable. Publishes the value returned
by the site.

I Combinators: only four:
I do f and g in parallel: f | g
I for all x from f do g (sequential composition): f >x> g
I for some x from g do f (pruning): f <x< g
I if f completes without publishing do g (otherwise): f ; g

I functions

I a lot of built-in sites
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Implementation in ORC

Symmetric composition f | g

I Evaluate f and g independently

I Publish all values from both

I No direct communication of interaction between f and g . They can
communicate only through sites.

I Example:
CNN(d) | BBC (d)

returns 0, 1 or 2 values.
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Implementation in ORC

Sequential composition f >x> g

I For all values published by f do g

I Publish only the values from g

I Example:
CNN(d) >x> Email(address, x)

I Example:

(CNN(d) | BBC (d)) >x> Email(address, x)

may call Email twice.
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Implementation in ORC

Pruning f <x< g

I Evaluate f and g in parallel. Site calls that need x are suspended.

I Example:
(M() | N(x)) <x< g

I When g returns a (first) value, bind the value to x , terminate g and
resume suspended calls.

I Example:

Email(address, x) <x< (CNN(d) | BBC (d))

sends at most one email.
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Implementation in ORC

Fork-join parallelism

I Call M and N in parallel

I Return their values as a tuple after both respond

I Example:
((u, v) < u < M()) < v < N()
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Implementation in ORC

Otherwise f ; g

Do f . If f completes without publishing then do g .

I An expression completes if its execution can take no more steps, and
all called sites have either responded, or will never respond.

I All library sites in ORC are helpful (indicate if they halt).

I Example:

(h >x> println(x) � ift(false)) ; ”done”

I Example: print all publications of h. When h completes, publish
“done”.
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Implementation in ORC

Concurrent function calls

def Metronome() = signal | (Rwait(1000) � Metronome())

(Metronome() � ”tick”) | (Rwait(500) � Metronome() � ”tock”)
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Implementation in ORC

Causality and QoS

Goal:

I Specified as an ORC program transformation: P → P ′

I P ′ behaves as P, but produces extra information about causality and
QoS

Approach:

I Events in ORC are site calls (and returns) and publications (including
intermediate ones)

I The idea is to instrument each event e with causal and QoS
additional information: (e, pre(e), q(e))
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Implementation in ORC

Causality tracking as a basis for QoS computation

Original program P
("The winner is " + x) <x< (Prompt("?") | Prompt("?"))

Transformed program P’
(x>(vx, )>
("The winner is " + vx,("The winner is ",[]):[x]))

<x< ((("Prompt",[])>u1>Prompt("?")>w1>(w1,[u1])) |

(("Prompt",[])>u2>Prompt("?")>w2>(w2,[u2])))
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Implementation in ORC

Example of response times
("The winner is Claude", [("The winner is ", []),

("Claude", [("Prompt", [])])])

"The winner is ", d0 "Prompt ", d1

"Claude", d2

"The winner is Claude", max(d0,d1+d2)
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Implementation in ORC

The ORC calculus

v ∈ Value
x , x1, . . . , xn ∈ Variable
f , g ∈ Expression ::= v x x(x1, . . . , xn) f | g

f >x> g f <x< g f ; g
def x(x1, . . . , xn) = fg
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Implementation in ORC

Transformation rules for causality

[[v ]]c → (v , c)
[[x ]]c → (v , {x} ∪ c) <(v , )< x {- v fresh -}

– function call {- v1, c1, . . . , vn, cn fresh -}
[[x(x1, . . . , xn)]]c → x((v1, c1 ∪ c) < (v1, c1) < x1, . . . ,

(vn, cn ∪ c) < (vn, cn) < xn)
– site call {- v1, c1, . . . , vn, cn,Y , u, v

′ fresh -}
[[x(x1, . . . , xn)]]c → ((x ,

⋃
1≤i≤n ci ∪ c) >u> x(v1, . . . , vn)

>(v ′,Y )> (v ′,Y ∪ {u}))
<(v1, c1)< x1 . . . <(vn, cn)< xn

[[f | g ]]c → [[f ]]c | [[g ]]c
[[f >x> g ]]c → [[f ]]c >x> [[g ]]{x}
[[f <x< g ]]c → [[f ]]c <x< [[g ]]c

[[def x(x1, . . . , xn) = fg ]]c → def x(x1, . . . , xn) = [[f ]]c [[g ]]c
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Implementation in ORC

The otherwise operator: tracking halts

All events inside the scope of the f ; g operator are recorded in a buffer.
When f halts, they form the causes of the halting event h, cause of g .

val trace = Buffer()
def max([], u) = trace.put(u)
def max(m : ms, (x , px)) = if member(m, px) then signal

else trace.put(m)) � max(ms, (x , px))
def record(u) = trace.getAll() >ms> max(ms, u)
def track(u) = (u, record(u)) > (y , ) > y

[[f ; g ]]c → [[f ]]c ; track((”h”, trace.getAll())) >x> [[g ]]{x}
−x fresh

Claude Jard () keynote – GPL2012 June 22, 2012 27 / 42



Implementation in ORC

Extension with QoS
Consider the general case of composite QoS domain, which is partially
ordered

Q = (Dq,≤q,⊕q)

I Each event is equipped with a QoS increment value

e = ((v , q,Q), pre(e))

I The associated QoS may be recursively computed using the causal
past

Q(e) =

 ∨
e′∈pre(e)

Q(e ′)


︸ ︷︷ ︸

synchronizing the causes

⊕ q(e)︸︷︷︸
increment
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Implementation in ORC

Extending ORC with a best QoS pruning operator: solving
conflicts by QoS competition
New pruning operator Demands in general to wait for all the first
publications of g

f <x<q g

Q = (Dq,≤q,⊕q,Cq)

I Direct conflicts are recorded with the event

e = ((v , q,Q)pre(e), directconflicts(e))

I Used in the QoS computation

Q(e) =

 ∨
e′∈pre(e)

Q(e ′)

 ⊕q q(e)

C
(
Q(e ′) | e ′ ∈ #(e)

)
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Implementation in ORC

Implementation: the principles

I Separate description of the composite QoS domain and its related
algebra

I The original ORC program is then weaved (instrumented) with the
QoS description

I Publications of the weaved program contain the QoS information
I Use of XML/OIL intermediate form

I This form is parsed and printed using SCALA functions
I Rules are implemented using ORC expressions and sites implemented in

SCALA
I The ORC engine executes the transformed OIL program
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Implementation in ORC

SLA description in ORC
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Soft contracts

QoS contracts cannot rely on hard bounds

I Why not a soft bound, covering 95% of the cases?

I Unfortunately, such contracts do not compose

I Idea: a contract is a probability distribution
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Soft contracts

Probabilistic contracts

I The contract consists of a probability distribution
I Probas compose well:

I use Max-Plus probabilistic algebra if the control is deterministic
I otherwise run Monte-Carlo simulations

I QoS distributions can result
I from contracts
I from measurements
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Soft contracts

Probabilistic contracts in practice

To make it practical, we 
can define probabilistic 
contracts by specifying 
only a finite set of 
quantiles 

(expressible in WSLA) 
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Monitoring

Statistical monitoring

I The specified contract F (x) = Pr(δ ≤ x) (probability density)
I A distribution G (x) breaching the contract, meaning that

I ¬(G ≥S F ), where ≥S denotes stochastic dominance
(∀x ,G (x) ≥ F (x))

I G is unknown: it is observed. How to perform on-line detection of the
contract violation?
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Monitoring

On-line detection

I Actual test running with t: supx [F (x)− G[t,t+N](x)] ≥ λ
I G[t,t+N](x) empirical distribution function based on [t, t + N]

λ: needs calibration	


I Calibration is performed by bootstrapping:
1. Build large training data set (Monte-Carlo simulation of contract

distribution)
2. Resample it many times by selecting N−size trials
3. Tune λ so that 95% of trials are accepted
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Conclusion

Conclusion

Web services orchestrations or choreographies are a world of
contracts

I SLA: function & QoS jointly

I The paradigm of contracts (composition, monitoring, reconfiguration)
I Novel issues

I Function: workflow & data
I QoS: monotonicity
I QoS: soft contracts
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Conclusion

Conclusion

We have proposed a comprehensive approach

I QoS algebra

I Probabilistic soft contracts

I Contract composition

I Statistical contract monitoring

I Reconfiguration?

A mix of techniques

I Formal concurrent models for orchestrations (ORC, Petri nets)

I Monte-Carlo simulation

I Bootstrap methods from statistics
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Conclusion

Thank you

Questions? 

QuestionA QuestionB 

q=stupid 
yes no 

Answer Answer+ Please 
Repeat 

Ask 
Colleagues 

Ask more 
Colleagues 

mux 

min min 

merge 

Response 

q 

c 

i p 

Timeout Timeout 
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