
Truong-Giang Le
LISITE-ISEP, 28 rue Notre-Dame des Champs, 75006 Paris, France

Email: le-truong.giang@isep.fr

1. Motivation

Reactive
systems

Monitoring
systems

Robotic
systems

Control
systems

Healthcare
systems

Embedded
systems

Interactive
systems

How to write and
verify them

straightforwardly?

2. Our Approach

Rule-based style

Event-based style

A new programming
language called INI

Major features

 Rules and events can be defined independently or
in combination.
 Programmers may write user-defined events in
Java or in C/C++, then integrate them into INI
programs.
 Events may run in parallel either asynchronously
or synchronously.
 Events can be reconfigured at runtime to change
their behaviors.

3. Examples 4. Type System in INI

A simple HTTP server
function main() {

 @init() {

 start_http_server(8080)

 }

}

function start_http_server(port) {

 @init() {

 s = socket_server(port)

 clear(c)

 println("Server started on " +

 port)

 }

 s {

 c = socket_accept(s)

 }

 @update[variable = c](oldc, newc) {

 // Handle HTTP requests here

 client = socket_address(c)

 ...

 }

}

A prototype for an M2M gateway
function main() {

 @init() {

 dataFile = file("faceData.csv")

 }

 $(e) f:@faceDetect[period = 100](point1,

 point2) {

 case {

 !file_exists(dataFile) {

 create_file(dataFile)

 }

 }

 fwriteln(dataFile, to_string(time()) + ","

 + point1 + "," + point2)

 }

 $(f) e:@every[time = 5000]() {

 upload_ftp("host", "username", "password",

 dataFile, to_string(time()) +

 "dataUpload.csv")

 delete_file(dataFile)

 }

}

5. Model Checking INI Programs

Common types

 Number types (Double, Float, Long,
Int, Byte), Char type, String type, and
Map types (List, Set).

User-defined types

Type inference and checking engine

 No need to declare any type
explicitly.
 Type conflicts are prohibited.

type Company = [name:String, numOfEmployee:Int]

function main() {

 @init() {

 c = Company[name = "XYZABC",numOfEmployee = 100]

 println("The " + c.name + " company has " +

 c.numOfEmployee + " employees.")

 }

}

INI can be converted to Promela for model checking with SPIN. Possible applications are:
 - Detecting infinite loops and unreachable code.
 - Verifying properties expressed in Linear Temporal Logic formulas.

 Example: Detecting unreachable code

function main() {

 @init() {

 v=1

 }

 v < 5 {

 v++

 }

 v == 6 {

 v = v+2

 }

}

int v = 1

proctype main() {

 do

 ::v < 5 -> v++;

 ::v == 6 -> v = v+2;

 ::else -> break;

 od;

}

init {

 run main();

}

...

unreached in proctype main

 UnreachableCode.pml:5, state 4,

 "v = (v+2)"

 (1 of 10 states)

unreached in init

 (0 of 2 states)

...

 Verification result

Syntax:
 Rule: <Condition> {<Action>}
 Event: $(<List of synchronized events>) id:@event[<Input parameters>](<Output parameters>) {<Action>}

Combining Rule-based and Event-based Programming Paradigms

for the Development of Reactive Systems

Sponsors: Reference:

https://sites.google.com/site/inilanguage

Project:

