
Research challenges from Free Software distributions

Roberto Di Cosmo
roberto@dicosmo.org

Université Paris Diderot and INRIA

June 8th, 2011
GDR GPL

Lille

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 1 / 47

mailto:roberto@dicosmo.org

Mancoosi at Paris-Diderot

This is joint work with:

Pietro Abate Jaap Boender Yacine Boufkhad

Ralf Treinen Jérôme Vouillon Stefano Zacchiroli

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 2 / 47

Outline

1 Context: growing complexity in Open Source
Free Software distributions

2 Tools for quality assurance in Free Software Distributions
Installation as SAT solving
Strong conflicts and antagonistic sets
Strong dependencies and dominators
Predicting the impact of a package upgrade
Predicting the impact of a package upgrade by future version,
clustered

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 3 / 47

Reminder: FOSS

free (as in free beer, or gratuit) software which has not (yet) to be payed

free (as in free speech, or libre) software granting 4 freedoms to its users:1

0 freedom to use the software

1 freedom to study and adapt the software to user needs (source code)

2 freedom to distribute software copies

3 freedom to distribute modified software copies

FOSS is radically changing the way software is conceived, developed,
maintained, deployed, tested, proven, marketed and sold.

1there are of course also obligations, which vary according to the license: GPL, BSD,
Mozilla, MIT/X, AGPL, . . .

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 5 / 47

Complex Software Systems

Complex software systems are built from large number of components,
which have to be deployed together; the most challenging are those that
change frequently.

The free/open source software (FOSS) infrastructure is a complex system
archetype:

no central authority / software architect

quick (release early, release often) and distributed development

strong component interdependency (because of software reuse)

large code bases freely accessible (for developers, students,
researchers, . . .)

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 6 / 47

Component based systems

Components

Proposed 1968 by Douglas McIlroy as a remedy to
the “software crisis”.
Some Characteristics of Components:

1 Multiple-use

2 Encapsulated

3 A unit of independent deployment and versioning

4 Composable with other components

Problem: Interaction between (3) and (4).

GNU/Linux distributions are among the largest
component based systems today!

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 7 / 47

The notion of distribution
How do you compose a system by selecting components from dozens of
thousands developed independently?
A new idea from FLOSS: GNU/Linux distributions as intermediaries
between FOSS projects and their users

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 8 / 47

Distributions: a “somehow” successful idea . . .

Central notion in distributions (to abstract over the complex underlying
infrastructure): package, together with package management software . . .

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 9 / 47

Packages, metadata, installation
Package ={

some files
some scripts
metadata

Identification

Inter-package rel.
I Dependencies
I Conflicts

Feature declarations

Other
I Package maintainer
I Textual descriptions
I ...

Example
Package: aterm

Version: 0.4.2-11

Section: x11

Installed-Size: 280

Maintainer: Göran Weinholt ...

Architecture: i386

Depends: libc6 (>= 2.3.2.ds1-4),

libice6 | xlibs (>> 4.1.0), ...

Conflicts: suidmanager (<< 0.50)

Provides: x-terminal-emulator

...

a package is the elemental component of modern distribution systems (not
GNU/Linux specific)

a working system is deployed by installing a package set (≈ 1000/2000 for
GNU/Linux distro)

.
Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 10 / 47

Distributions show superlinear growth

Figure: Number of packages in successive Debian releases

Maintaining and deploying such large collections is becoming hard.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 11 / 47

Installation process
Phase Trace
User request # apt-get install aterm

Constraint resolution



Reading package lists... Done

Building dependency tree... Done

The following extra packages will be installed:

libafterimage0

The following NEW packages will be installed

aterm libafterimage0

0 upgraded, 2 newly installed, 0 to remove and 1786 not upgraded.

Need to get 386kB of archives.

After unpacking 807kB of additional disk space will be used.

Do you want to continue [Y/n]? Y

Package retrieval


Get: 1 http://debian.ens-cachan.fr testing/main libafterimage0 2.2.8-2 [301kB]

Get: 2 http://debian.ens-cachan.fr testing/main aterm 1.0.1-4 [84.4kB]

Fetched 386kB in 0s (410kB/s)

Pre-configuration {

Unpacking



Selecting previously deselected package libafterimage0.

(Reading database ... 294774 files and directories currently installed.)

Unpacking libafterimage0 (from .../libafterimage0_2.2.8-2_i386.deb) ...

Selecting previously deselected package aterm.

Unpacking aterm (from .../aterm_1.0.1-4_i386.deb) ...

Configuration

{
Setting up libafterimage0 (2.2.8-2) ...

Setting up aterm (1.0.1-4) ...

each phase can fail (it actually happens quite often . . .)

efforts should be made to identify errors as early as possible

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 12 / 47

Research directions

To improve the situation, there are two main research directions:

solve problems on the distribution editor’s side

find broken packages
find packages which impact large parts of the
distribution
...

solve problems on the end user’s side

optimize the upgrade plan of the user’s machine
design expressive user preference languages
...

We focus now on the first part, and leave the rest for a future talk.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 13 / 47

The difficult life of distribution maintainers

A distribution maintainer controls the evolution of a distribution by
regulating the flow of new packages into it and the removal of packages
from it.
With 27000+ packages, we need tools to help, by efficiently answering
questions like:

1 what are the packages that cannot be installed (broken) using the
distribution I am releasing?

2 what are the packages that block the installation of many other
packages?

3 what are the packages most dependend upon?

4 what are the broken packages that can only be fixed by changing
them?

5 what are the future version changes that will break more packages in
the distribution?

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 15 / 47

Model (simplified, Debian-like)

Names, Versions and Constraints

Set N of names

Set V of versions: total and dense order

Set Con of constraints : >, = v , > v , < v , . . . where v ∈ V

A package (n, v ,D,C) consists of

a package name n,

a version v ,

a set of dependencies D ∈ P(P(N×Con)),

a set of conflicts C ∈ P(N×Con),

A repository

is a set of packages, such that no two different packages carry the same
name (Debian view of the component world).

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 16 / 47

An R-installation

is a set I ⊆ R with:

abundance For each element d ∈ p.D there exists (n, c) ∈ d and a
package q ∈ I such that q.n = n and p.v ∈ [[c]].

peace For each (n, c) ∈ p.C and package q ∈ I , if q.n = n then
q.v 6∈ [[c]].

flatness For all p, q ∈ I : if p 6= q then p.n 6= q.n

Installability

p ∈ R is R-installable if there exists an R-installation I with p ∈ I .

Co-Installability

S ⊆ R is R-co-installable if there exists an R-installation I with S ⊆ I .

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 17 / 47

How hard are the problems related to package installation?

Theorem

The following problems are NP -complete:

installability of a single package

coinstallability of a set of packages

Proof: bi-directional mapping between dependency resolution and boolean
satisfiability (see Di Cosmo, Leroy, Treinen, Vouillon et al, Ase 2006)

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 18 / 47

Package installation as a SAT problem

Version constraints are expanded to the disjunction of the packages in
the repository that satisfy that constraint:

(p >> 2.1− 3) becomes (p, 2.2) ∨ (p, 2.3− 1)

For every package P version V in the repository a boolean variable Pv

is introduced.

For every dependency relation we introduce a logical implication of
the form Pv → R1 ∧ · · · ∧ Rn

For every conflict relation we introduce a logical implication of the
form Pv → ¬R1 ∧ · · · ∧ ¬R2

The encoding of the repository is given by the conjunction of all the
logical implication introduced by dependencies and conflicts.

The flatness of the repository is encoded by explicit conflicts among
all the variables of the same name.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 19 / 47

Installation and SAT solving

Install libc6 version
2.3.2.ds1-22 in

Package: libc6

Version: 2.2.5-11.8

Package: libc6

Version: 2.3.5-3

Package: libc6

Version: 2.3.2.ds1-22

Depends: libdb1-compat

Package: libdb1-compat

Version: 2.1.3-8

Depends: libc6 (>= 2.3.5-1)

Package: libdb1-compat

Version: 2.1.3-7

Depends: libc6 (>= 2.2.5-13)

becomes

libc62.3.2.ds1−22

∧
¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)
∧
¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)
∧
¬(libc62.3.5−3 ∧ libc62.2.5−11.8)
∧
¬(libdb1-compat2.1.3−7 ∧ libdb1-compat2.1.3−8)
∧
libc62.3.2.ds1−22 →
(libdb1-compat2.1.3−7 ∨ libdb1-compat2.1.3−8)
∧
libdb1-compat2.1.3−7 →
(libc62.3.2.ds1−22 ∨ libc62.3.5−3)
∧
libdb1-compat2.1.3−8 → libc62.3.5−3

Not that easy: pre-depends, optimizations, error explanation, . . .

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 20 / 47

Special cases

Theorem

If R = (P,D,C) with an empty conflict relation C , then

installability of a single package is decidable in linear time

Proof:
Pv → (Q1

1 ∨ · · ·Q1
n1) ∧ · · · ∧ (Qk

1 ∨ · · ·Qk
nk)

becomes

Pv → (Q1
1 ∨ · · ·Q1

n1)
...

Pv → (Qk
1 ∨ · · ·Qk

nk)

which are dual horn clauses, and the result follows from (the dual of)
linear time decidability of satisfiability of Horn formulae (Downing and
Gallier, 1984)

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 21 / 47

Practical complexity

Checking installability is NP-Complete, but recent SAT solvers are able to
handle easily current instances.

In Debian, single package installation leads to problems with a few
thousands literals, and almost Horn formulae.

The edos-debcheck tool, by Jérôme Vouillon, is used daily as part of
Debian’s Quality Assurance process:

see it at work on http://edos.debian.net/weather/ ...

soon on the Gnome and KDE status bar next to you.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 22 / 47

http://edos.debian.net/weather/

Strong Conflicts

Definition (strong conflicts)

the packages in S are in strong conflict if they can never be installed all
together

Theorem

Determining whether S is in strong conflict in a repository R is
co-NP-complete

Proof: by duality with co-installability.

See Boender and Di Cosmo, ISEC 2010

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 23 / 47

Strong conflicts in Debian Lenny

Strong Package Explicit Explicit Cone Cone
Conflicts Conflicts Dependencies Size Height

2368 ppmtofb 2 3 6 4
127 libgd2-noxpm 4 6 8 4
127 libgd2-noxpm-dev 2 5 15 5
107 heimdal-dev 2 8 121 10

71 dtc-postfix-courier 2 22 348 8
71 dtc-toaster 0 11 429 9
70 citadel-mta 1 6 123 9
69 citadel-suite 0 5 133 9
66 xmail 4 6 105 8
63 apache2-mpm-event 2 5 122 10
63 apache2-mpm-worker 2 5 122 10
62 harden 0 4 214 9
62 harden-servers 36 2 103 8
57 gpe 0 31 263 10
56 heimdal-servers 10 16 139 9
55 heimdal-servers-x 2 15 142 9
53 libapache2-mod-php5filter 2 16 129 9
52 dtc-cyrus 2 17 345 8
50 kdepimlibs5-dev 1 6 225 9
46 kdebase-runtime-data-common 2 0 1 1

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 24 / 47

Computing strong conflicts efficiently
By turning Ubuntu main’s 7000 packages and 31000 dependencies into

ubiquity-slideshow-kubuntu ubiquity-slideshow-ubuntu

tk8.4-doc tk8.5-doc tcl8.4-doc tcl8.5-doc

openbsd-inetd xinetd

network-manager-kde plasma-widget-networkmanagement (x 2)

libstdc++6-4.4-doc libstdc++6-4.5-doc libstdc++6-4.4-dbg libstdc++6-4.5-dbg

#libsdl1.2debian-all

libsdl1.2debian-alsa

libsdl1.2debian-esd

libsdl1.2debian-oss

libsdl1.2debian-pulseaudio

libreadline6-dev (x 6) libreadline5-dev

libjpeg62-dev (x 23) libjpeg8-dev

libgd2-noxpm

libgd2-xpm (x 10)

libdb4.8-dev (x 5) libdb4.7-dev (x 2)

libcurl4-gnutls-dev (x 4) libcurl4-openssl-dev

foomatic-db-compressed-ppds (x 4) foomatic-db

apache2-prefork-dev

apache2-threaded-dev

libecore-dev

libedje-dev (x 2)

libgd2-noxpm-dev

libgd2-xpm-dev

librdf0-dev

librpm-dev

ubuntu-desktop

ubuntu-netbook

libreadline5-dbg libreadline6-dbg

libqt4-dbg (x 24) qt-x11-free-dbg

libneon27-dev libneon27-gnutls-dev

libjack-jackd2-0 (x 2) libjack0 (x 3)

libiodbc2-dev unixodbc-dev

libgpod4 (x 9) libgpod4-nogtk (x 2)

libgl1-mesa-glx (x 8) libgl1-mesa-swx11 (x 3)

#

libclutter-1.0-0 (x 2)

libclutter-eglx-es11-1.0-0 (x 2)

libclutter-eglx-es20-1.0-0 (x 2)

libclutter-1.0-dev (x 2)

libclutter-eglx-es11-1.0-dev

libclutter-eglx-es20-1.0-dev

libelf-dev (x 3) libelfg0-dev

libdb4.7-java (x 3) libdb4.8-java (x 3)

lib64stdc++6-4.4-dbg lib64stdc++6-4.5-dbg

lib64readline5-dev lib64readline6-dev

hunspell-tools myspell-tools

hunspell-fr (x 3) myspell-fr

hunspell-de-de (x 3) myspell-de-de-oldspell

hello hello-debhelper

grub grub-legacy-ec2

#

grub-efi-amd64

grub-efi-ia32 (x 2)

grub-pc

flex flex-old

exim4-daemon-heavy (x 2)

exim4-daemon-light (x 2)

exim4-config (x 5) postfix (x 9)

emacs23 emacs23-nox

debconf-english debconf-i18n

#

bacula-common-mysql (x 3)

bacula-common-pgsql (x 3)

bacula-common-sqlite3 (x 3)

#

apache2-mpm-event

apache2-mpm-prefork (x 2)

apache2-mpm-worker

eucalyptus-nc ∨

abrowser (x 7049)

This is really difficult: more details in September at Szeged (Vouillon and
Di Cosmo, ESEC/FSE 2011)

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 25 / 47

Finding packages that are heavily depended upon

Other important packages are those which are needed by many others.
Previous work in the literature focused on:

direct dependencies

a package is important if it is mentioned many times in the repository
metadata

transitive closure of direct dependencies (cone of a package)

a package is important if it appears in the cone of many other packages

These syntactic notions have no real signification for dependency analysis.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 26 / 47

Strong dependencies

Definition

p strongly depends on q with respect to R if it is not possible to
install p without also installing q.

Impact Set of a package p

IS(p) = {q ∈ R|q → p}

george

able baker

charlie dog

fox

easyv

v

george

able baker

charlie dog

fox

easyv

v

george: conjunctive
dependency

baker: disjunctive, but
easy not installed

fox: dependency of both
alternatives

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 27 / 47

Strong dependencies

Theorem

Determining whether p strongly depends on q in a repository R is
co-NP-complete

Using the boolean formulae encoding of installability, this property can be
shown equivalent to proving p → q in the theory obtained by encoding the
repository R.

Strong dependencies are transitive, so the graph of strong dependencies
may be huge (and it is: almost one million arrows for Debian Lenny).

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 28 / 47

Computing Strong dependencies

Näıve approach

Sdeps = empty

for p in R

for q in R

if check(p) and not sat(p and not q)

then add (p,q) to Sdeps

done

done

Quadratic number of calls to a sat solver, with n > 25.000...
we are not going to do this!

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 29 / 47

Computing Strong dependencies

We observe that

if p strongly depends on q, then all installations of p contain q

a SAT-solver designed for checking installability returns small
installations

Smarter algorithm

Sdeps = empty

for p in R

for q in install(p,R)

if not sat(p and not q) then add (p,q) to Sdeps

done

done

The average size of an installation is small, so the concrete complexity is
low, and we can compute strong dependencies for Debian Lenny in a few
minutes!

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 30 / 47

Top 15 of sensitive packages in Debian 5.0
Package direct strong cone

1 gcc-4.3-base 43 20128 20132
2 libgcc1 3011 20126 20130
3 libc6 10442 20126 20130
4 libstdc++6 2786 14964 15259
5 libselinux1 50 14121 14634
6 lzma 4 13534 13990
7 libattr1 110 13489 14024
8 libacl1 113 13467 14003
9 coreutils 17 13454 13991

10 dpkg 55 13450 13987
11 perl-base 299 13310 13959
12 debconf 1512 11387 12083
13 libncurses5 572 11017 13466
14 zlib1g 1640 10945 13734
15 libdb4.6 103 9640 13991

. . .

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 31 / 47

GCC
Why does gcc-4.3-base have 43 direct and 20 128 strong
predecessors?
And why does ligcc1 have 3011 direct and 20 126 strong predessors?
libc6, needed by almost everybody

libc6 libgcc1

gcc-4.3-base

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 32 / 47

Strong Dominance

Definition (strong dominance)

We say that p strongly dominates q if :

p strongly depends on q

forall o, if o strongly depends on q, then o strongly depends on p

In a picture:

p1

 A
AA

AA
AA

A
___ pi

��

___ pn

~~}}
}}

}}
}}

q

��
r

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 33 / 47

Strong dominance

Theorem

Determining whether p dominates q in a repository R is co-NP-complete

Proof: we can answer the problem with a polynomial algorithm using
strong dependencies

Theorem (connection with dominators)

The strong dominators in a repository can be seen as dominators in the
detransitivised graph of strong dependencies, augmented with a special
start node.

So one can use Tarjan’s algorithm on the detransitivised graph.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 34 / 47

Approximate strong dominance

In practice, we use an coarser notion of dominance.

p1

 A
AA

AA
AA

A
___ pi

��

___ pn

~~}}
}}

}}
}}

s1

~~||
||

||
||

||
||

||
||

||
|

___ sk

yysssssssssssssssssssssssss

q

��
r

and put a threshold on the % of nodes on the right w.r.t. the total.
We cannot use Tarjan’s algorithm, but the running time is still a few
minutes on top of strong dependencies.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 35 / 47

Why approximate strong dominance
Using dominators for ordering the top 15 packages from Debian Lenny
seen before:

libc6

libgcc1

perl-modules

perl

libc6

gcc-4.3-base

0.004968 libgcc1

0.004968

dpkg

libselinux1

4.973608coreutils

0.022303

lzma

0.617054

libattr1

0.267638libacl1

0.111516

4.949833 0.245262

libacl2

0.089186

perl-base

1.044249

1.066787 1.667794

1.314702

1.156938

0.155925

perl-modules

libgdbm3

3.152298 perl

3.152298

lsb-base

sed

3.717135

libxcb1

libxdmcp6

0.044254

libxau6

0.236023

libxcb-xlib0

1.224612

1.269415 1.463560

See more details in Abate, Boender, Di Cosmo and Zacchiroli, ESEM 2009.
Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 36 / 47

Predicting the future of a distribution

Goal

For a universe U and a package p with version v in it, compute the
packages that will be broken if we upgrade p to a future version w , for all
possible future versions w .

Two main difficulties:

changes in p: we do not know the metadata of any future version w
of p... as it is not part of the universe;

open ended version space: the number of possible future version is
infinite;

We cannot test all futures! We need to reduce the search space.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 37 / 47

Approximating changes in p

Definition (Dummy upgrade package)

dummy(p,w) is a package with name p, version w and with no
dependencies and conflicts.

Proposition (Approximation)

Given a universe U containing package p in version v, and a newer version
w of package p, then if a package q ∈ U becomes uninstallable in
upgr(U[(p, v) 7→ (dummy(p,w))]), then it is also uninstallable in
upgr(U[(p, v) 7→ (p,w)]).

In other words substituting (p, v) with dummy(p,w) is an over
approximation of the result of any upgrade of p to any future version w .

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 38 / 47

Open ended version space

Definition (Constraints of a package)

The list of constraints constr(p,U) of a package p in a universe U is the
set of terms (relop, version) associated to p in the conflicts and
dependencies constraints of U, taken in lexicographic order.

key observation: Installability only depends on the valuation of the
constraints (if they are true or false), and not on the particular
version that makes such valuation hold.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 39 / 47

Discretization of the future of p

Definition (Valuation of a constraints)

eval(c , v) =


v = w if c ≡ (=,w)
v ≤ w if c ≡ (≤,w)
v ≥ w if c ≡ (≥,w)
v < w if c ≡ (<,w)
v > w if c ≡ (>,w)

leval([c1, ..., cn], v) = [eval(c1, v)), ..., eval(cn, v)]

Definition (Version equivalence and discriminants)

For a package p in a universe U, consider the ordered finite list l of
constraints on p in U.

v ∼ w ⇐⇒ leval(l , v) = leval(l ,w)

defines an equivalence relation, with a finite set of equivalence classes, on
the versions of p. We call discriminants of p in U the representatives of
these finite equivalence classes.Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 40 / 47

Approximation+Discriminants=Prediction

It is possible to show that

Proposition (Discretisation)

If a universe U contains a package p with version v, and v ∼ w, then any
package q can be installed in U iff it can be installed in
upgr(U[(p, v) 7→ (p,w)]).

Corollary (Computing prediction maps)

To approximate the impact of upgrades of a package p, v in U, it is
enough to check upgr(U[(p, v) 7→ (dummy(p,w))]) for all discriminants
w of p in U.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 41 / 47

Algorithm for single package upgrade

PM ← []
for all p ∈ U do
for all vi ∈ Discriminants(p) do

d ← dummy(p, vi)
U ′ ← U − {p} ∪ {d}
for all (q,w) ∈ R do

if ¬check(U ′, (q,w)) then
PM[(p, vi)]← PM[(p, vi)] ∪ {(q,w)}

end if
end for

end for
end for
return PM

Figure: Computing the prediction map of a universe.

This algrithm can run on a full Debian repository in just a few hours.
Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 42 / 47

Results for Lenny

Table: Prediction map for the top 20 Debian impact sets

Package Version Target Version #(IS) #(BP)
gcc-4.3-base 4.3.2-1.1 < 4.3.2-1.1 20128 20127
libgcc1 1:4.3.2-1.1 < 1:4.3.2-1.1 20126 4
libc6 2.7-18 < 2.7-18 20126 1421
libstdc++6 4.3.2-1.1 any 14964 0
libselinux1 2.0.65-5 < 2.0.65-5 14121 53
lzma 4.43-14 any 13534 0
libattr1 1:2.4.43-2 < 1:2.4.43-2 13489 37
libacl1 2.2.47-2 < 2.2.47-2 13467 36
coreutils 6.10-6 any 13454 0
dpkg 1.14.25 any 13450 0
perl-base 5.10.0-19 < 5.10.0-19 13310 8259
debconf 1.5.24 any 11387 0
libncurses5 5.7+20081213-1 < 5.7+20081213-1 11017 290
zlib1g 1:1.2.3.3.dfsg-12 < 1:1.2.3.3.dfsg-12 10945 582
zlib1g 1:1.2.3.3.dfsg-12 any 10945 0
libdb4.6 4.6.21-11 < 4.6.21-11 9640 12
debianutils 2.30 any 8204 0
libgdbm3 1.8.3-3 < 1.8.3-3 8148 3
sed 4.1.5-6 any 8008 0
perl 5.10.0-19 < 6 7898 775
perl 5.10.0-19 5.10.0-19 < . < 6 7898 775
perl-modules 5.10.0-19 < 5.10.0-19 7898 634

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 43 / 47

Clustering upgrades

Observation

certain clusters of packages need to be upgraded simultaneously, to avoid
breaking too many other packages.

For example, gcc-4.3-base is generated automatically from the same
source that produces libgcc1, and is expected to be upgraded in sync
with it. The pointwise analysis misses this fact.

Solution

perform simulated upgrades in clusters

In Debian: cluster along the Source: key.
See more details in Abate and Di Cosmo, HOTSWup 2011.

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 44 / 47

Results for Squeeze

Table: Top 20 cluster upgrades, by number of broken components

Source Version Target Version #(BP)
perl 5.10.1-16 5.10.2 < . < 5.12 2652
perl 5.10.1-16 5.10.1-16 < . < 5.10.2 2652
perl 5.10.1-16 > 006 2652
perl 5.10.1-16 5.12 < . < 5.12.0 2651
perl 5.10.1-16 5.12.0 < . < 006 2651
python-defaults 2.6.6-3+squeeze1 > 3 1802
python-defaults 2.6.6-3+squeeze1 2.07 < . < 2.008 1800
python-defaults 2.6.6-3+squeeze1 2.008 < . < 3 1800
python-numpy 1:1.4.1-5 > 1:1.5 542
pygobject 2.21.4+is.2.21.3-1 > 2.21.4+is.2.21.3-1 522
pycairo 1.8.8-1 > 1.8.8-1+b1 517
gtk+2.0 2.20.1-2 > 2.20.1-2 482
udisks 1.0.1+git20100614-3 > 1.1.0 417
eglibc 2.11.2-7 > 2.12 395
eglibc 2.11.2-7 2.11.2-7 < . < 2.12 382
ghc6 6.12.1-13 > 6.12.1+ 357
ghc6 6.12.1-13 6.12.1-13 < . < 6.12.1+ 357
libnotify 0.5.0-2 > 0.5.0-2 331
ocaml 3.11.2-2 > 3.11.2-2 252
apt 0.8.8 > 0.8.8 219
haskell-mtl 1.1.0.2-10 > 1.1.0.2+ 173
haskell-mtl 1.1.0.2-10 1.1.0.2-10+b1 < . < 1.1.0.2+ 173
libdbi-perl 1.612-1 > 1.612-1 172
pygtk 2.17.0-4 > 2.17.0-4 129
libjpeg6b 6b1-1 > 6b1-1 115
e2fsprogs 1.41.12-2 > 1.41.12-2 115
mysql-5.1 5.1.49-2 > 5.1.49-2 109
pyorbit 2.24.0-6 > 2.24.0-6 100
ruby1.8 1.8.7.302-2 > 1.8.7.302-2 99
gnustep-make 2.4.0-3 < 2.4.0-3 95
libpng 1.2.44-1 > 1.2.44-1 90
iceweasel 3.5.15-1 > 3.07 80
iceweasel 3.5.15-1 3.5.99 < . < 3.07 79
sip4-qt3 4.10.2-1 > 4.10.2-1 77
haskell-parsec2 2.1.0.1-2 2.1.0.1-2+b1 < . < 2.1.0.1+ 70
haskell-parsec2 2.1.0.1-2 > 2.1.0.1+ 70
xorg-server 2:1.7.7-9 > 2:1.7.7-9 68

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 45 / 47

Conclusions

Free Software Distributions are a new, interesting area of research:

full access to real-world problems and information

research results can be transferred to practice quite quickly (see
edos.debian.net and mancoosi.debian.net)

there are nice connections with logic, constraints, software
engineering, visualization, ...

... and the problems can be quite harder than you would expect!

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 46 / 47

edos.debian.net
mancoosi.debian.net

Questions?

Learn more on http://www.mancoosi.org and http://www.irill.org.

1 Abate, Boender, Di Cosmo and Zacchiroli, Strong Dependencies
between Software Components, ESEM 2009

2 Boender and Di Cosmo, Using strong conflicts to detect quality issues
in component-based complex systems, ISEC 2010

3 Abate and Di Cosmo, Predicting Upgrade Failures Using Dependency
Analysis, HOTSWup 2011

4 Vouillon and Di Cosmo, On software component co-installability,
ESEC/FSE 2011

Roberto Di Cosmo (IRILL / UPD / INRIA) Free Software Challenges 08/06/2011 - Lille 47 / 47

http://www.mancoosi.org
http://www.irill.org

	Context: growing complexity in Open Source
	Free Software distributions

	Tools for quality assurance in Free Software Distributions
	Installation as SAT solving
	Strong conflicts and antagonistic sets
	Strong dependencies and dominators
	Predicting the impact of a package upgrade
	Predicting the impact of a package upgrade by future version, clustered

