
28 January 2008 Toulouse, GDR GPL national days 1

Satisfiability Modulo Theories
and its applications

in (and out of) Formal Verification

Alessandro Cimatti
Fondazione Bruno Kessler, Trento, Italy

cimatti@fbk.eu

28 January 2008 Toulouse, GDR GPL national days 2

The Embedded Systems Unit

• Formal verification methods for complex system design

• Research
– formal verification, requirements validation
– safety analysis (fault tree analysis, FMEA)
– planning/execution/monitoring for on-board autonomy

• Tool development
– The NuSMV model checker
– The MathSAT SMT solver
– The RAT requirements analysis tool
– The FSAP platform for safety analysis
– The MBP planner

• Technology transfer
– European Space Agency
– European Railway Agency
– Industrial partners (e.g. process control, railways signaling)

28 January 2008 Toulouse, GDR GPL national days 3

Formal Methods in a Nutshell

• Formal specification
– representing artifact (specification, design, algorithm) and

desired properties by means of a mathematically precise,
unambiguous, logical language

• Formal verification
– prove theorems in corresponding mathematical theory

• Objectives
– prove correctness

– find "more" bugs

– find them "earlier" in the development flow

• Key issues
– usability, seamless integration in development flow

– expressiveness vs automation

28 January 2008 Toulouse, GDR GPL national days 4

Outline of the talk

• Traditional Formal Verification
– Boolean techniques:BDD, SAT

• Satisfiability Modulo Theories
– Beyond the Boolean case

• SMT for verification (et al.)
– From SAT-based to SMT-based

– Software Model Checking

– Requirements Validation

– Other applications

• Conclusions

28 January 2008 Toulouse, GDR GPL national days 5

Formal Verification

• Focus on "fully automated" verification

• Reactive System
– not finite computation program (e.g. sorting)
– communication protocol, hw design, control software, OS
– modeled as a state transition system

• Requirements
– modeled as formulae in a temporal logic

• Does my system satisfy the requirements?

• Model checking
– search configurations of state transition system
– detect violation to property, and produce witness of violation
– conlcude absence of violation

28 January 2008 Toulouse, GDR GPL national days 6

Properties

• Safety properties
– nothing bad ever happens

• never (P1.critical & P2.critical)

• always (P1.critical -> (P1.critical until P1.done))

– state transition system can't reach a bad
configuration

• Liveness properties
– something good will happen

• always (P1.trying -> eventually P1.critical)

– state transition system can not exhibit a bad cycle

28 January 2008 Toulouse, GDR GPL national days 7

Model Checking

• From properties to "monitors"
– able to recognize violations
– checking safety properties reduced to reachability
analysis

• Given model of reactive system
– State variables V
– States S = Pow(V)
– Initial states I ⊂ S
– Transition relation R: S -> Pow(S)
– Bad states B ⊂ S

• Find whether a bad state is reachable
– s0, s1, …, sn with s0∊ I, si+1 ∊ R(si), sn∊ B

28 January 2008 Toulouse, GDR GPL national days 8

Model Checking

• Prove that nothing bad can ever happen

• An "easy" problem
– linear in size of state space

– easy?

• State space exponential in the number of
variables…
– not so easy

28 January 2008 Toulouse, GDR GPL national days 9

Explicit State Model Checking

• Each state stored and expanded as individual object

• E.g. model with x, y, z

• Each state represented as a bit vector
– 000, 001, …, 111

• Vanilla Algorithm
1. Open := I, Closed := {}

2. Open := Open \ {s}

3. If s∊B return "violation"

4. Closed := Closed U {s}

5. Open := Open U (R(s) \ Closed)

6. If Open = {} return "success"

7. goto step 2.

28 January 2008 Toulouse, GDR GPL national days 10

Explicit State Model Checking

• The SPIN model checker

• Very high degree of technology
– partial order reduction

– bit-state hashing

– heuristic guidance

– disk storage techniques

• Very effective in certain application domains
– e.g. communication protocols

• Main limitation: memory consumption
– "proportional" to number of reachable states

28 January 2008 Toulouse, GDR GPL national days 11

Symbolic Representation

• State variables as variables in a logical language
– x, y, z, w

• A state is an assignment to state variables
– The bitvector 0011
– The assignment x |-> F , y |-> F , z |-> T , w |-> T
– The formula ¬x & ¬y & z & w

• A set of states is a a set of assignments
– can be represented by a logical formula
– x and not y represents {1000 , 1001 , 1010, 1011}

or a larger set, if more variables are present

• Set operations represented by logical operations
– union, intersection, complementation as
– disjunction, conjunction, negation

• I(X), B(X) are formulae in X
– Is there a bad initial state?
– Is I(X) & B(X) satisfiable?

28 January 2008 Toulouse, GDR GPL national days 12

Symbolic Representation

• Symbolic representation of transitions?

• Transition
– pair of assignments to state variables

• Use two sets of variables
– current state variables: x, y, z

– next state variables: x', y', z'

• A formula in current and next state variables
– represents a set of assignments to X and X'

– a set of transitions

– R(X, X')

28 January 2008 Toulouse, GDR GPL national days 13

BDD-based Symbolic Model Checking

• The first form of Symbolic Model Checking

• Based on Binary Decision Diagrams
– canonical representation for logical formulae

• I(X), R(X, X'), B(X)
– each represented by a BDD

• Image computation: compute all successors of
all states in S(X)
– based on projection operation

– exists X.(S(X) and R(X, X'))

28 January 2008 Toulouse, GDR GPL national days 14

Binary Decision Diagrams

• Binary Decision Diagrams
– canonical representation for

boolean functions
– ITE nodes
– fixed order on test variables
– (A ⋀ (B ⋁ C))

• Reduction rules
– only one occurrence of the

same subtree
– if(P, b, b) == b

• Can blow up in space
• Order of variables can make

huge difference

A

B

C

truefalse

28 January 2008 Toulouse, GDR GPL national days 15

More on BDDs

• Core of traditional EDA tools
– In practice, can be extremely efficient

– They provide QBF functionalities

∃∃∃∃ x.Φ(x, V) == Φ(false, V) ⋁ Φ(true, V)

– Fundamental operation in model checking

28 January 2008 Toulouse, GDR GPL national days 16

Symbolic Reachability Analysis

Visited := False
New := I
while (true) {
if IsSat(New & B) return "violation"
New := Image(New, R) & ¬Visited
if New(x) = False return "success"
Visited := Visited | New

}

A symbolic breadth-first search, where each
layer is represented by a BDD

28 January 2008 Toulouse, GDR GPL national days 17

Techniques for BDD-based SMC

• Variable orderings
– dynamically change order to reduce size

• Partitioning
– list of implicitly conjuncted BDDs rahter than
single, monolithic BDD

– trading one quantification over many variables with
multiple quantifications over reduced number of
varaibles

• Reachability Algorithms
– priority-based reachability
– overapproximations
– inductive reasoning

28 January 2008 Toulouse, GDR GPL national days 18

Symbolic model checking without BDDs

• [BCCZ99] contained two key insights

• Focus on finding bugs
– give up proof of correctness

– try to falsify property, i.e. witness to violation

– within given resource limit (bound)

• Use SAT solver instead of BDDs

28 January 2008 Toulouse, GDR GPL national days 19

Symbolic Representation

• Vectors of state variables
– current state X

– next state X'

• Initial condition I(X)

• Transition relation R(X, X')

• Bug states B(X)

• I, R, B, represented as formulae rather than
BDDs
– much smaller size!

28 January 2008 Toulouse, GDR GPL national days 20

Bounded Model Checking

• State variables replicated K times
– X0 , X1, Xk-1, Xk

• Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– bug if satisfiable

– increase k until …

28 January 2008 Toulouse, GDR GPL national days 21

K-Induction

• Prove absence of bugs by induction
– I(X0) ⋀ B(X0)
– I(X0) ⋀ R(X0, X1) ⋀ ¬B(X1)
– …
– ¬B(X0) ⋀ R(X0, X1) ⋀ … ⋀ ¬B(Xk-1) ⋀ R(Xk-1, Xk) ⋀ B(Xk)
– proved correct if unsatisfiable (and no bugs until k)

• Important features
– incremental interface
– lemmas can be shifted over time

• from Ф(X0, X1) to Ф(Xi, Xj)

28 January 2008 Toulouse, GDR GPL national days 22

SAT-based vs BDD-based

• BDD-based
– all models, may blow up in space
– actually based on QBF operators
– can easily check fix point
– uses twice |X| variables

• SAT-based
– one model
– may diverge in time
– much weaker in QBF operators
– uses k times |X| variables
– How is it possible?
– SAT solvers are impressive objects!

28 January 2008 Toulouse, GDR GPL national days 23

⊥ ⊥

⊥ ⊥ ⊥ T
SAT!

Boolean SAT: search space

P

• The DPLL procedure
• Incremental construction of satisfying assignment
• Backtrack/backjump on conflict
• Learn reason for conflict
• Splitting heuristics

Q

R

S

S

R

T

Q

S

T

R

28 January 2008 Toulouse, GDR GPL national days 24

Techniques for SAT-based SMC

• Incrementality/backtrackability
– bounded model checking problems are similar

– SAT solver can add and remove clauses

• Unsatisfiable core extraction
– used for explanation and problem simplification

• Interpolation
– a whole research line with own algorithms

– disregarded here for time limits

Beyond Boolean Verification:
Satisfiability Modulo Theories

28 January 2008 Toulouse, GDR GPL national days 26

Beyond the Boolean case

• Boolean verification engines are very powerful

• They work at the boolean level

• Why is this a limitation?
– Boolean representation not expressive enough

• encoding may not exist, or can "blow up"

– Boolean reasoning not the “right” level of abstraction
• important information may be lost during encoding

28 January 2008 Toulouse, GDR GPL national days 27

Some examples

• RTL circuits
– word w[n] reduced to w.1 … w.n boolean variables
– booleanization destroys data path structure!

• pipelines
– function symbols used to abstract blocks

• timed automata
– real-valued variables for timing
– difference constraints to express time elapse

• hybrid automata
– real-valued variables for physical dynamics
– mathematical constraints to express continuous evolution

• software verification
– integer-valued variables for proof obligations

28 January 2008 Toulouse, GDR GPL national days 28

Satisfiability Modulo Theory

• Trade off between expressiveness and reasoning
– SAT solvers: boolean case, automated and very efficient

– theorem provers: general FOL, limited automation

• Satisfiability Modulo Theories: a sweet spot?
– retain efficiency of boolean reasoning

– increase expressiveness

– decidable fragments of FOL

• Impact on verification:
– increase capacity by working above the boolean level

28 January 2008 Toulouse, GDR GPL national days 29

Statisfiability Modulo Theories

• An extension of boolean SAT
• Some atoms have non-boolean (theory) content

• A1 : x – y ≤ 3
• A2 : y – z = 10
• A3 : x – z ≥ 15

• Theory interpretation for individual variables,
constants, functions and predicates

• if x = 0, y = 20, z = 10
• then A1 = T, A2 = T, A3 = F

• Interpretations of atoms are constrained
• A1, A2 and A3 can not be all true at the same time

28 January 2008 Toulouse, GDR GPL national days 30

Theories of Practical Interest

• Equality Uninterpreted Functions (EUF)
– x = f(y), h(x) = g(y)

• Difference constraints (DL)
– x – y ≤ 3

• Linear Arithmetic
– 3x – 5y + 7z ≤ 1
– reals (LRA), integers (LIA)

• Arrays (Ar)
– read(write(A, i, v), j)

• Bit Vectors (BV)
• Their combination

SMT solvers

28 January 2008 Toulouse, GDR GPL national days 33

Propositional
structure

P P P

The
SAT

problem

P P P P
+ - + - + - + -+ -

+

28 January 2008 Toulouse, GDR GPL national days 34

Propositional
structure

TA TA TA TA

P P P

x y z w x x y z w x

+ - +

The
SMT

problem

+ -+ - +

v v vv v vv v v

+

28 January 2008 Toulouse, GDR GPL national days 35

MathSAT: intuitions

• The search combines boolean reasoning and theory
reasoning

• Find boolean model
– theory atoms treated as boolean atoms
– truth values to boolean and theory atoms
– model propositionally satisfies the formula

• Check consistency wrt theory
– set of constraints induced by truth values to theory atoms
– existence of values to theory variables

• The MathSAT approach
– Boolean search DPLL
– theory reasoning

28 January 2008 Toulouse, GDR GPL national days 36

Propositional
structure

TA TA TA TA

P P P

x y z w x x y z w x

+ - +

The
SMT
solver

+ -+ - +

v v vv v vv v v

+

TA TA TA TA
+ -+ - + -+ -++-

28 January 2008 Toulouse, GDR GPL national days 37

⊥ ⊥

⊥ ⊥ ⊥ T
SAT!

Boolean DPLL

P

• The DPLL procedure
• Incremental construction of satisfying assignment
• Backtrack/backjump on conflict
• Learn reason for conflict
• Splitting heuristics

Q

R

S

S

R

T

Q

S

T

R

28 January 2008 Toulouse, GDR GPL national days 38

Bool ⊥

Bool ⊥ Bool T Bool ⊥

MathSAT: search space

Many boolean models are not theory consistent!

P

Q

R

S

S

R

T

Q

S

T

R

Th ⊥

Bool T
Th ⊥

Bool T
Th T

SAT!!!

TS1

z – 2*w = 1 FS

FR1

x – z ≥ 15TR

FQ

y – z = 10TP2

FP1

x – y ≤ 3TP

28 January 2008 Toulouse, GDR GPL national days 39

Bool ⊥ Bool T
Math T
SAT!

EP:Th ⊥ EP:Th T

EP:Math T

EP:Th T

EP:Math T

Pruned away
in the EP step

Early pruning

Check theory consistency of partial assignments

P

Q

S

T

R

28 January 2008 Toulouse, GDR GPL national days 40

Learning Theory Conflicts

The theory solver can detect
a reason for inconsistency

I.e. a subset of the literals
that are mutually unsatisfiable
E.g. x = y, y = z, x != z

Learn a conflict clause
x != y or y != z or x = z

By BCP the boolean
enumeration will never make
same mistake again

Bool ⊥ Bool T
Math T
SAT!

EP:Th ⊥ EP:Math T

EP:Th T

EP:Math T

EP:Th T

Pruned away
in the EP step

P

Q

S

T

R

28 January 2008 Toulouse, GDR GPL national days 41

Theory Deduction

The theory solver can detect that
certain atoms have forced values

E.g. from x = y and x = z
infer that y = z should be true

Force deterministic assignments

Theory version of BCP

Furthermore, we can learn the
deduction:

x=y & x = z -> y=z

Theory Conflict vs theory deduction Bool ⊥ Bool T
Th T
SAT!

EP:Math ⊥ EP:Th T

EP:Math T

EP:Th T

EP:Th T

Pruned away
in the EP step

P

Q

S

T

R

28 January 2008 Toulouse, GDR GPL national days 42

Optimizations

• Incrementality and Backtackability
– add constraints without restarting from scratch

– remove constraints without paying too much

• Limiting cost of early pruning
– filtering, incomplete calls

• Conflict set minimization
– return T-inconsistent subset of assignment

• Deduction
– return forced values to unassigned theory atoms

• Static learning
– precompile obvious theory reasoning reasoning to boolean

28 January 2008 Toulouse, GDR GPL national days 43

State of the art

• Relatively recent field, a lot of interest

• Impressive improvements in the last four years

• Many solvers available
– Yices, MathSAT, Barcelogic, CVC3, Z3, Boolector, Spear, …

• SMT-LIB
– unified language

– wide benchmark set from several application domains

• SMT-COMP
– held yearly

• SMT Workshop
– this year at CADE

SMT-based verification

28 January 2008 Toulouse, GDR GPL national days 45

The Role of SMT in verification

• State variables of various types
– in addition to discrete

– reals, integers, bitvectors, arrays, …

• Representation
– higher level

– structural information is retained

28 January 2008 Toulouse, GDR GPL national days 46

Symbolic Encoding

• Vectors of state variables
– current state X

– next state X'

• Initial condition I(X)

• Transition relation R(X, X')

• Bug states B(X)

• Key difference
– X, X' are not limited to boolean variables

– I, R, B are STM formulae

28 January 2008 Toulouse, GDR GPL national days 47

SMT-based Algorithms

• From SAT-based to SMT-based algorithms

• Simply replace SAT solver with SMT solvers
– bounded model checking

– k-induction

28 January 2008 Toulouse, GDR GPL national days 48

BMC and Induction

• Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)
– bug if satisfiable
– increase k until …

• Prove absence of bugs by induction
– ¬B(X0) ⋀ R(X0, X1) ⋀ … ⋀ ¬B(Xk-1) ⋀ R(Xk-1, Xk) ⋀ B(Xk)
– proved correct if unsatisfiable (and no bugs until k)

• Important features
– incremental interface
– theory lemmas should be retained
– theory lemmas can be shifted over time

• from Ф(X0, X1) to Ф(Xi, Xj)
– Unsat core and generation of interpolants
– Elimination of quantifiers

Counter-Example Guided
Abstraction-refinement

28 January 2008 Toulouse, GDR GPL national days 50

P0

P1

not P1

0100

10 11

P2

not P2

000

010 011

001

100 101

Ψ0(X)

Ψ1(X)

Ψ2(X)

I(X)

R(X, X')

State vars X

Abstract State vars P

AI (P)

AR(P,P')

not P0

28 January 2008 Toulouse, GDR GPL national days 51

Counter-Example Guided
Abstraction-Refinement (CEGAR)

28 January 2008 Toulouse, GDR GPL national days 52

Computing Abstractions

• Given concrete model CI(X), CR(X, X')

• Given set of predicates Ψi(X)
each associated to abstract variable Pi

• Obtain the corresponding abstract model

• AR(P, P') is defined by

∃∃∃∃ X X'.(CR(X, X') ⋀⋀⋀⋀ ⋀i Pi ↔↔↔↔ Ψi(X) ⋀⋀⋀⋀ ⋀i Pi' ↔↔↔↔ Ψi(X'))

• Existential quantification as AllSMT
– SMT solver extended to generate all satisfying
assignment

28 January 2008 Toulouse, GDR GPL national days 53

NuSMV + MathSAT

• Forthcoming: NuSMT
– tight integration of MathSAT and NuSMV
– symbolic verification of

• timed systems
• hybrid systems
• high level circuits

• Stay tuned at
– The NuSMV model checker

• http://nusmv.fbk.eu/

– The MathSAT SMT solver
• http://mathsat4.disi.unitn.it/

Requirements Validation
based on SMT

The EuRailCheck project

28 January 2008 Toulouse, GDR GPL national days 55

Focus here: requirements, not model

• In traditional formal verification
– the design is under analysis

– the requirements are taken as "golden"

– verification means checking compliance

• Here the goal is to
– enhance quality of requirements

• A much harder task!
– from informal to formal

28 January 2008 Toulouse, GDR GPL national days 56

Why is it so hard?
• Requirements analysis is a pervasive problem in nowadays industry

– In hardware design, standards for languages to represent properties and
design intent are emerging (e.g. PLS, SVA)

• Problem 1: Natural language
– ambiguous
– degree of automation
– requires background information

• Problem 2: when are my requirements good?
– are they too strict? Are some required behaviours being (wrongly)

disallowed?
– are they too weak? Are some undesirable behaviours being (wrongly)

allowed?

• The source of the matter is that what is being modeled is informal
– the design intent that must be captured by the specification is in the head

of the specifier

28 January 2008 Toulouse, GDR GPL national days 57

Issues of interest in this project

• PB1: Bridging the gap between natural language and
formal analysis

• PB2: providing methods for pinpointing flaws in
requirements

• And also (as usual) …
– Integration within requirements engineering flow
– Usability

• Avoid intricate formalisms
• Hide formal methods with semiformal representations

– Automation of the verification process
• Model checking

28 January 2008 Toulouse, GDR GPL national days 58

From Informal to Formal

NATURAL LANGUAGE

SEMIFORMAL

LANGUAGE

FORMAL LANGUAGE

28 January 2008 Toulouse, GDR GPL national days 59

Which flaws in requirements?

• A set of requirement is a set of constraints over possible evolutions of the
entities in the domain

• Possible questions
– Are my requirements too strict?
– Are my requirements too weak?

• Possible checks
– Consistency check (too strict?)

• is there at least one admissible behaviour?
– Possibility check (too strict?)

• is a given desirable behaviour admissible?
– Assertion check (too weak?)

• is a given undesirable behaviour excluded?

• Warning: no way to formalize design intent!

Requirements

Possible

Behaviours

??

28 January 2008 Toulouse, GDR GPL national days 60

The role of SMT
Modeling continuous evolution

• Requirements combine discrete variables with
continuous, real-valued variables
– e.g. speed, position, time elapse, timers

• One state is an assignment to discrete and continuous
variables

• Evolution of the scenario
– discrete transitions: no time elapse, change in discrete state
– continuous transitions: time elapse, no change in discrete

state, continuous state changed according to flow equations
– example: p(t+∆) = p(t) + v·∆

• The problem is hard
– provably undecidable
– apply incomplete techniques (bounded model checking, CEGAR)

28 January 2008 Toulouse, GDR GPL national days 61

Main project results

• A requirements analysis methodology
– integrating informal and formal techniques
– hiding formal techniques as much as possible
– controlled natural language

• A support toolset
– based on standard commercial tools: RSA, RequisitePro
– integrating verification engine NuSMV and MathSAT

• Formalization of substantial fragments of ETCS specifications

• Training and ongoing work
– two-days workshop
– three weeks of training to ETCS experts
– "next-steps" workshop in Februrary in Lille

Other applications of SMT

28 January 2008 Toulouse, GDR GPL national days 63

Applications to High-level
Hardware Design

• Ongoing work with Intel Haifa
– Application described in "high level" language
– words and memories are not blasted into bits

• Custom decision procedure for Bit Vectors
• Applications

– Register-transfer level circuits
– Microcode

• Functionalities
– more scalable verification

• currently based on boolean SAT

– tight integration with symbolic simulation
• pipe of proof obligations

– Automated Test Pattern Generation
• enumerate many different randomized solutions

28 January 2008 Toulouse, GDR GPL national days 64

Analysis of Railways Control Software

• Control software for Interlocking
– controls devices in train station
– Application independent scheduler
– Parameterized, object oriented
– Instantiation with respect to station topology

• Model Checking to analyze single modules
– SMT-based software model checking
– checking termination, functional properties

• Compositional reasoning for global proofs
– based on scheduler structure

• Reverse engineering from the code
– inspection, what-if reasoning

• Other potential role of SMT solving
– dealing with quantified formulae over lists of entities

28 January 2008 Toulouse, GDR GPL national days 65

Parametric Schedulability Analysis

• Schedulability analysis
– given set of processes and scheduling policy
– check whether deadlines can be met

• Key problem: sensitivity analysis
– where do the numbers come from?
– typically, these are estimates
– traditional schedulability theory based on numerical

raesoning, lifting results to practical cases may be nontrivial
• Goal: analyze sensitivity with respect to variations
• Analytical construction of schedulability region!
• The role of SMT

– SMT allows for parametric representation
– SMT-based bounded model checking to generate one

fragment of unschedulability region
– iterate to generate all fragments
– CEGAR to terminate the iteration

28 January 2008 Toulouse, GDR GPL national days 66

Design Mutation in Avionics

• The problem: find "good" spatial position of aircraft
components with respect to safety constaints
– no electrical components "below" component that potential

leakage
– not all components implementing critical function on same

impact trajectory

• Required functionalities
– is a configuration satisfactory
– reasons for violation
– find acceptable solution
– find optimal solution

• Encode problem into SMT
– may require dedicated, custom theory
– may require extension to "optimal constraints"

28 January 2008 Toulouse, GDR GPL national days 67

Conclusions

• SMT solvers increasingly effective
– more expressive languages

– more functionalities

– faster solvers

• Better solutions to "traditional" problems
– formal verification

– ATPG

• Possible solutions to non-standard problems
– requirements validation

– design mutation

– schedulability analysis

