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The Embedded Systems Unit

• Formal verification methods for complex system design

• Research
– formal verification, requirements validation
– safety analysis (fault tree analysis, FMEA)
– planning/execution/monitoring for on-board autonomy

• Tool development
– The NuSMV model checker
– The MathSAT SMT solver
– The RAT requirements analysis tool
– The FSAP platform for safety analysis
– The MBP planner

• Technology transfer
– European Space Agency
– European Railway Agency
– Industrial partners (e.g. process control, railways signaling)



28 January 2008 Toulouse, GDR GPL national days 3

Formal Methods in a Nutshell

• Formal specification
– representing artifact (specification, design, algorithm) and 

desired properties by means of a mathematically precise, 
unambiguous, logical language

• Formal verification
– prove theorems in corresponding mathematical theory

• Objectives
– prove correctness 

– find "more" bugs

– find them "earlier" in the development flow

• Key issues
– usability, seamless integration in development flow

– expressiveness vs automation
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Outline of the talk

• Traditional Formal Verification
– Boolean techniques:BDD, SAT

• Satisfiability Modulo Theories
– Beyond the Boolean case

• SMT for verification (et al.)
– From SAT-based to SMT-based 

– Software Model Checking

– Requirements Validation

– Other applications

• Conclusions
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Formal Verification

• Focus on "fully automated" verification

• Reactive System
– not finite computation program (e.g. sorting)
– communication protocol, hw design, control software, OS
– modeled as a state transition system

• Requirements
– modeled as formulae in a temporal logic

• Does my system satisfy the requirements?

• Model checking
– search configurations of state transition system
– detect violation to property, and produce witness of violation
– conlcude absence of violation
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Properties

• Safety properties
– nothing bad ever happens

• never (P1.critical & P2.critical)

• always (P1.critical -> (P1.critical until P1.done))

– state transition system can't reach a bad 
configuration

• Liveness properties
– something good will happen

• always (P1.trying -> eventually P1.critical)

– state transition system can not exhibit a bad cycle
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Model Checking

• From properties to "monitors"
– able to recognize violations
– checking safety properties reduced to reachability
analysis

• Given model of reactive system
– State variables V
– States S = Pow(V)
– Initial states I ⊂ S
– Transition relation R: S -> Pow(S)
– Bad states B ⊂ S

• Find whether a bad state is reachable
– s0, s1, …, sn with s0∊ I, si+1 ∊ R(si), sn∊ B 
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Model Checking

• Prove that nothing bad can ever happen

• An "easy" problem
– linear in size of state space

– easy?

• State space exponential in the number of 
variables…
– not so easy
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Explicit State Model Checking

• Each state stored and expanded as individual object

• E.g. model with x, y, z

• Each state represented as a bit vector
– 000, 001, …, 111

• Vanilla Algorithm
1. Open :=  I, Closed := {}

2. Open := Open \ {s}

3. If s∊B return "violation"

4. Closed := Closed U {s}

5. Open := Open U (R(s) \ Closed)

6. If Open = {} return "success"

7. goto step 2.
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Explicit State Model Checking

• The SPIN model checker

• Very high degree of technology
– partial order reduction

– bit-state hashing

– heuristic guidance

– disk storage techniques

• Very effective in certain application domains
– e.g. communication protocols

• Main limitation: memory consumption
– "proportional" to number of reachable states
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Symbolic Representation

• State variables as variables in a logical language
– x, y, z, w

• A state is an assignment to state variables
– The bitvector 0011
– The assignment x |-> F ,  y |-> F , z |-> T , w |-> T
– The formula ¬x & ¬y & z & w

• A set of states is a a set of assignments
– can be represented by a logical formula
– x and not y represents {1000 , 1001 , 1010, 1011}

or a larger set, if more variables are present

• Set operations represented by logical operations
– union, intersection, complementation as
– disjunction, conjunction, negation

• I(X), B(X) are formulae in X
– Is there a bad initial state?
– Is I(X) & B(X) satisfiable?
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Symbolic Representation

• Symbolic representation of transitions?

• Transition
– pair of assignments to state variables

• Use two sets of variables
– current state variables: x, y, z

– next state variables: x', y', z'

• A formula in current and next state variables
– represents a set of assignments to X and X'

– a set of transitions

– R(X, X')
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BDD-based Symbolic Model Checking

• The first form of Symbolic Model Checking

• Based on Binary Decision Diagrams
– canonical representation for logical formulae

• I(X), R(X, X'), B(X)
– each represented by a BDD

• Image computation: compute all successors of 
all states in S(X)
– based on projection operation

– exists X.(S(X) and R(X, X'))



28 January 2008 Toulouse, GDR GPL national days 14

Binary Decision Diagrams

• Binary Decision Diagrams
– canonical representation for 

boolean functions
– ITE nodes
– fixed order on test variables
– (A ⋀ (B ⋁ C))

• Reduction rules
– only one occurrence of the 

same subtree
– if(P, b, b) == b

• Can blow up in space
• Order of variables can make 

huge difference

A

B

C

truefalse
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More on BDDs

• Core of traditional EDA tools
– In practice, can be extremely efficient

– They provide QBF functionalities

∃∃∃∃ x.Φ(x, V) == Φ(false, V) ⋁ Φ(true, V)

– Fundamental operation in model checking
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Symbolic Reachability Analysis

Visited := False
New :=  I
while (true) {
if IsSat(New & B) return "violation"
New := Image(New, R) & ¬Visited
if New(x) = False return "success"
Visited := Visited | New

}

A symbolic breadth-first search, where each 
layer is represented by a BDD
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Techniques for BDD-based SMC

• Variable orderings
– dynamically change order to reduce size

• Partitioning
– list of implicitly conjuncted BDDs rahter than 
single, monolithic BDD

– trading one quantification over many variables with 
multiple quantifications over reduced number of 
varaibles

• Reachability Algorithms
– priority-based reachability
– overapproximations
– inductive reasoning
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Symbolic model checking without BDDs

• [BCCZ99] contained two key insights

• Focus on finding bugs
– give up proof of correctness

– try to falsify property, i.e. witness to violation

– within given resource limit (bound)

• Use SAT solver instead of BDDs



28 January 2008 Toulouse, GDR GPL national days 19

Symbolic Representation

• Vectors of state variables
– current state X

– next state X'

• Initial condition I(X)

• Transition relation R(X, X')

• Bug states B(X)

• I, R, B, represented as formulae rather than 
BDDs
– much smaller size!
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Bounded Model Checking

• State variables replicated K times
– X0 , X1, Xk-1, Xk

• Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)

– bug if satisfiable

– increase k until …
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K-Induction

• Prove absence of bugs by induction
– I(X0) ⋀ B(X0)
– I(X0) ⋀ R(X0, X1) ⋀ ¬B(X1)
– …
– ¬B(X0) ⋀ R(X0, X1) ⋀ … ⋀ ¬B(Xk-1) ⋀ R(Xk-1, Xk) ⋀ B(Xk)
– proved correct if unsatisfiable (and no bugs until k)

• Important features
– incremental interface
– lemmas can be shifted over time

• from Ф(X0, X1) to Ф(Xi, Xj) 
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SAT-based vs BDD-based

• BDD-based
– all models, may blow up in space
– actually based on QBF operators
– can easily check fix point
– uses twice |X| variables

• SAT-based
– one model
– may diverge in time
– much weaker in QBF operators
– uses k times |X| variables
– How is it possible?
– SAT solvers are impressive objects!
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⊥ ⊥

⊥ ⊥ ⊥ T
SAT!

Boolean SAT: search space

P

• The DPLL procedure
• Incremental construction of satisfying assignment
• Backtrack/backjump on conflict
• Learn reason for conflict
• Splitting heuristics

Q

R

S

S

R

T

Q

S

T

R
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Techniques for SAT-based SMC

• Incrementality/backtrackability
– bounded model checking problems are similar

– SAT solver can add and remove clauses

• Unsatisfiable core extraction
– used for explanation and problem simplification

• Interpolation
– a whole research line with own algorithms

– disregarded here for time limits



Beyond Boolean Verification:
Satisfiability Modulo Theories
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Beyond the Boolean case

• Boolean verification engines are very powerful

• They work at the boolean level

• Why is this a limitation?
– Boolean representation not expressive enough

• encoding may not exist, or can "blow up"

– Boolean reasoning not the “right” level of abstraction
• important information may be lost during encoding
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Some examples

• RTL circuits
– word w[n]  reduced to w.1 … w.n boolean variables
– booleanization destroys data path structure!

• pipelines
– function symbols used to abstract blocks

• timed automata
– real-valued variables for timing
– difference constraints to express time elapse

• hybrid automata
– real-valued variables for physical dynamics
– mathematical constraints to express continuous evolution

• software verification
– integer-valued variables for proof obligations
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Satisfiability Modulo Theory

• Trade off between expressiveness and reasoning
– SAT solvers: boolean case, automated and very efficient

– theorem provers: general FOL, limited automation

• Satisfiability Modulo Theories: a sweet spot?
– retain efficiency of boolean reasoning

– increase expressiveness

– decidable fragments of FOL

• Impact on verification:
– increase capacity by working above the boolean level
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Statisfiability Modulo Theories

• An extension of boolean SAT
• Some atoms have non-boolean (theory) content

• A1 : x – y ≤ 3
• A2 : y – z = 10
• A3 : x – z ≥ 15

• Theory interpretation for individual variables, 
constants, functions and predicates

• if x = 0, y = 20, z = 10
• then A1 = T, A2 = T, A3 = F

• Interpretations of atoms are constrained
• A1, A2 and A3 can not be all true at the same time
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Theories of Practical Interest

• Equality Uninterpreted Functions (EUF)
– x = f(y), h(x) = g(y)

• Difference constraints (DL)
– x – y ≤ 3

• Linear Arithmetic 
– 3x – 5y + 7z ≤ 1
– reals (LRA), integers (LIA)

• Arrays (Ar)
– read(write(A, i, v), j)

• Bit Vectors (BV)
• Their combination



SMT solvers



28 January 2008 Toulouse, GDR GPL national days 33

Propositional
structure

P  P  P

The 
SAT 

problem

P       P P       P
+ - + - + - + -+ -

+
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Propositional
structure

TA TA TA TA

P  P  P

x y z w  x x y z     w  x

+ - +

The 
SMT 

problem

+ -+ - +

v v vv v vv v v

+



28 January 2008 Toulouse, GDR GPL national days 35

MathSAT: intuitions

• The search combines boolean reasoning and theory 
reasoning

• Find boolean model
– theory atoms treated as boolean atoms
– truth values to boolean and theory atoms
– model propositionally satisfies the formula 

• Check consistency wrt theory
– set of constraints induced by truth values to theory atoms
– existence of values to theory variables

• The MathSAT approach
– Boolean search DPLL
– theory reasoning
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Propositional
structure

TA TA TA TA

P  P  P

x y z w  x x y z     w  x

+ - +

The 
SMT 
solver

+ -+ - +

v v vv v vv v v

+

TA TA TA TA
+ -+ - + -+ -++-
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⊥ ⊥

⊥ ⊥ ⊥ T
SAT!

Boolean DPLL

P

• The DPLL procedure
• Incremental construction of satisfying assignment
• Backtrack/backjump on conflict
• Learn reason for conflict
• Splitting heuristics

Q

R

S

S

R

T

Q

S

T

R
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Bool ⊥

Bool ⊥ Bool T Bool ⊥

MathSAT: search space

Many boolean models are not theory consistent!

P

Q

R

S

S

R

T

Q

S

T

R

Th ⊥

Bool T
Th ⊥

Bool T
Th T

SAT!!!

TS1

z – 2*w = 1  FS

FR1

x – z ≥ 15TR

FQ

y – z = 10TP2

FP1

x – y ≤ 3TP
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Bool ⊥ Bool T
Math T
SAT!

EP:Th ⊥ EP:Th T

EP:Math T

EP:Th T

EP:Math T

Pruned away 
in the EP step

Early pruning

Check theory consistency of partial assignments

P

Q

S

T

R
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Learning Theory Conflicts

The theory solver can detect 
a reason for inconsistency

I.e. a subset of the literals 
that are mutually unsatisfiable
E.g. x = y, y = z, x != z

Learn a conflict clause
x != y or y != z or x = z

By BCP the boolean
enumeration will never make 
same mistake again

Bool ⊥ Bool T
Math T
SAT!

EP:Th ⊥ EP:Math T

EP:Th T

EP:Math T

EP:Th T

Pruned away 
in the EP step

P

Q

S

T

R
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Theory Deduction

The theory solver can detect that 
certain atoms have forced values

E.g. from x = y and x = z
infer that y = z should be true

Force deterministic assignments

Theory version of BCP

Furthermore, we can learn the 
deduction:

x=y & x = z -> y=z

Theory Conflict vs theory deduction Bool ⊥ Bool T
Th T
SAT!

EP:Math ⊥ EP:Th T

EP:Math T

EP:Th T

EP:Th T

Pruned away 
in the EP step

P

Q

S

T

R
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Optimizations

• Incrementality and Backtackability
– add constraints without restarting from scratch

– remove constraints without paying too much

• Limiting cost of early pruning
– filtering, incomplete calls

• Conflict set minimization
– return T-inconsistent subset of assignment

• Deduction
– return forced values to unassigned theory atoms

• Static learning
– precompile obvious theory reasoning reasoning to boolean
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State of the art

• Relatively recent field, a lot of interest

• Impressive improvements in the last four years

• Many solvers available
– Yices, MathSAT, Barcelogic, CVC3, Z3, Boolector, Spear, …

• SMT-LIB
– unified language

– wide benchmark set from several application domains

• SMT-COMP
– held yearly

• SMT Workshop
– this year at CADE



SMT-based verification
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The Role of SMT in verification

• State variables of various types
– in addition to discrete

– reals, integers, bitvectors, arrays, …

• Representation
– higher level

– structural information is retained
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Symbolic Encoding

• Vectors of state variables
– current state X

– next state X'

• Initial condition I(X)

• Transition relation R(X, X')

• Bug states B(X)

• Key difference
– X, X' are not limited to boolean variables

– I, R, B are STM formulae
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SMT-based Algorithms

• From SAT-based to SMT-based algorithms

• Simply replace SAT solver with SMT solvers
– bounded model checking

– k-induction
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BMC and Induction

• Look for bugs of increasing length
– I(X0) ⋀ R(X0, X1) ⋀ … ⋀ R(Xk-1, Xk) ⋀ B(Xk)
– bug if satisfiable
– increase k until …

• Prove absence of bugs by induction
– ¬B(X0) ⋀ R(X0, X1) ⋀ … ⋀ ¬B(Xk-1) ⋀ R(Xk-1, Xk) ⋀ B(Xk)
– proved correct if unsatisfiable (and no bugs until k)

• Important features
– incremental interface
– theory lemmas should be retained
– theory lemmas can be shifted over time

• from Ф(X0, X1) to Ф(Xi, Xj) 
– Unsat core and generation of interpolants
– Elimination of quantifiers



Counter-Example Guided 
Abstraction-refinement
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P0

P1

not P1

0100

10 11

P2

not P2

000

010 011

001

100 101

Ψ0(X)

Ψ1(X)

Ψ2(X)

I(X)

R(X, X')

State vars X

Abstract State vars P

AI (P)

AR(P,P')

not P0
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Counter-Example Guided
Abstraction-Refinement (CEGAR)
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Computing Abstractions

• Given concrete model CI(X), CR(X, X')

• Given set of predicates Ψi(X)
each associated to abstract variable Pi

• Obtain the corresponding abstract model

• AR(P, P') is defined by

∃∃∃∃ X X'.(CR(X, X') ⋀⋀⋀⋀ ⋀i Pi ↔↔↔↔ Ψi(X) ⋀⋀⋀⋀ ⋀i Pi' ↔↔↔↔ Ψi(X') )

• Existential quantification as AllSMT
– SMT solver extended to generate all satisfying
assignment
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NuSMV + MathSAT

• Forthcoming: NuSMT
– tight integration of MathSAT and NuSMV
– symbolic verification of

• timed systems
• hybrid systems
• high level circuits

• Stay tuned at
– The NuSMV model checker

• http://nusmv.fbk.eu/

– The MathSAT SMT solver
• http://mathsat4.disi.unitn.it/



Requirements Validation
based on SMT

The EuRailCheck project
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Focus here: requirements, not model

• In traditional formal verification
– the design is under analysis

– the requirements are taken as "golden"

– verification means checking compliance

• Here the goal is to
– enhance quality of requirements

• A much harder task!
– from informal to formal
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Why is it so hard?
• Requirements analysis is a pervasive problem in nowadays industry

– In hardware design, standards for languages to represent properties and 
design intent are emerging (e.g. PLS, SVA)

• Problem 1: Natural language
– ambiguous
– degree of automation
– requires background information

• Problem 2: when are my requirements good?
– are they too strict? Are some required behaviours being (wrongly) 

disallowed?
– are they too weak? Are some undesirable behaviours being (wrongly) 

allowed?

• The source of the matter is that what is being modeled is informal
– the design intent that must be captured by the specification is in the head 

of the specifier
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Issues of interest in this project

• PB1: Bridging the gap between natural language and 
formal analysis

• PB2: providing methods for pinpointing flaws in 
requirements

• And also (as usual) …
– Integration within requirements engineering flow
– Usability

• Avoid intricate formalisms
• Hide formal methods with semiformal representations

– Automation of the verification process
• Model checking
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From Informal to Formal

NATURAL LANGUAGE

SEMIFORMAL

LANGUAGE

FORMAL LANGUAGE
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Which flaws in requirements?

• A set of requirement is a set of constraints over possible evolutions of the 
entities in the domain

• Possible questions
– Are my requirements too strict?
– Are my requirements too weak?

• Possible checks
– Consistency check (too strict?)

• is there at least one admissible behaviour?
– Possibility check (too strict?)

• is a given desirable behaviour admissible?
– Assertion check (too weak?)

• is a given undesirable behaviour excluded?

• Warning: no way to formalize design intent!

Requirements

Possible

Behaviours

??
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The role of SMT
Modeling continuous evolution

• Requirements combine discrete variables with
continuous, real-valued variables
– e.g. speed, position, time elapse, timers

• One state is an assignment to discrete and continuous
variables

• Evolution of the scenario
– discrete transitions: no time elapse, change in discrete state
– continuous transitions: time elapse, no change in discrete 

state, continuous state changed according to flow equations
– example: p(t+∆) = p(t) + v·∆

• The problem is hard
– provably undecidable
– apply incomplete techniques (bounded model checking, CEGAR)
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Main project results

• A requirements analysis methodology
– integrating informal and formal techniques
– hiding formal techniques as much as possible
– controlled natural language

• A support toolset
– based on standard commercial tools: RSA, RequisitePro
– integrating verification engine NuSMV and MathSAT

• Formalization of substantial fragments of ETCS specifications

• Training and ongoing work
– two-days workshop
– three weeks of training to ETCS experts
– "next-steps" workshop in Februrary in Lille



Other applications of SMT
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Applications to High-level
Hardware Design

• Ongoing work with Intel Haifa
– Application described in "high level" language
– words and memories are not blasted into bits

• Custom decision procedure for Bit Vectors
• Applications

– Register-transfer level circuits
– Microcode

• Functionalities
– more scalable verification

• currently based on boolean SAT

– tight integration with symbolic simulation
• pipe of proof obligations

– Automated Test Pattern Generation
• enumerate many different randomized solutions
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Analysis of Railways Control Software

• Control software for Interlocking
– controls devices in train station
– Application independent scheduler
– Parameterized, object oriented
– Instantiation with respect to station topology

• Model Checking to analyze single modules
– SMT-based software model checking
– checking termination, functional properties

• Compositional reasoning for global proofs
– based on scheduler structure

• Reverse engineering from the code
– inspection, what-if reasoning

• Other potential role of SMT solving
– dealing with quantified formulae over lists of entities
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Parametric Schedulability Analysis

• Schedulability analysis
– given set of processes and scheduling policy
– check whether deadlines can be met

• Key problem: sensitivity analysis
– where do the numbers come from?
– typically, these are estimates
– traditional schedulability theory based on numerical 

raesoning, lifting results to practical cases may be nontrivial
• Goal: analyze sensitivity with respect to variations
• Analytical construction of schedulability region!
• The role of SMT

– SMT allows for parametric representation
– SMT-based bounded model checking to generate one 

fragment of unschedulability region
– iterate to generate all fragments
– CEGAR to terminate the iteration
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Design Mutation in Avionics

• The problem: find "good" spatial position of aircraft 
components with respect to safety constaints
– no electrical components "below" component that potential 

leakage
– not all components implementing critical function on same 

impact trajectory

• Required functionalities
– is a configuration satisfactory
– reasons for violation
– find acceptable solution
– find optimal solution

• Encode problem into SMT
– may require dedicated, custom theory
– may require extension to "optimal constraints"
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Conclusions

• SMT solvers increasingly effective
– more expressive languages

– more functionalities

– faster solvers

• Better solutions to "traditional" problems
– formal verification

– ATPG

• Possible solutions to non-standard problems
– requirements validation

– design mutation

– schedulability analysis


