Colorado State University

Gomputer Science Nepartment

The Fall & Rise of Model Driven
Development (MDD)
(Why we need to rethink MDD

Robert B. France

Dept. of Computer Science
Colorado State University
USA

france@cs.colostate.edu

Fighting the software beast

D o /AN

NO TELLN WiT

Colorado State Univers

ity
GCompuier Science Depariment

6/21/12

Is the beast really in the software system?

Or is the beast in the software development
perceptions of problems, paradigms,
processes, methods, tools, that we hold on
to?

Is what we consider to be essential software

complexity really accidental problem or solution
complexity?

Colorado State University

6/21/12 Gompuoier Science Department

HOW DID WE GET HERE?

Colorado State University

Gompuier Science Department

6/21/12

Modeling practices: The journey

70’s-90’s: Computer-Aided Software Engineering
(CASE)

o Focus on descriptive models used primarily for
communication/documentation, and for simulation
(e.g., executable data flow diagrams)

o Modeling treated as an informal, sketching activity
o Flow charts, SA/SD, early OO modeling languages

70’s - : Formal specification techniques

o Focus on use prescriptive models used primarily for
formally specifying systems

o Z, B, Petri Nets, ASM, CCS, CSP, SDL, ..., Alloy,
model checking, Coq, Isabelle

Colorado State Univer

sity
6/21/12 Gompuoier Science Department 5

The journey - 2

90’s - : Generative approaches

o Focus on use of prescriptive models as generators of
software artifacts (implementations, configuration
scripts, test cases, ...)

o Models treated as core software development artifacts
2 MD* (e.g., MDA, MDE, MDD)

Colorado State Un

1iversity
6/21/12 Gompuoier Science Department

A view of MDD

“Model-Driven Development” (MDD) is
concerned with

o reducing accidental complexities associated with
developing complex software

o through use of technologies that support rigorous
transformation of abstractions to software
Implementations

MDD is concerned with developing software
tools to support the work of software
engineers

Colorado State Univer

sity
Gompuoier Science Department

6/21/12

Is modeling essential to software
development?

Software development is a modeling activity

How can we better leverage modeling
techniques?

Colorado State U

niversity
Gomputer Science Nlepartment

MDD Principles

Separation of concerns

o Abstraction

o Separation of software views/perspectives
Automation/formality

o Support for rigorous analysis and prediction
o Support for artifact generation
Incrementality

o Support for synthesizing wholes from parts
o Aspect-oriented modeling

Reusability

o Patterns

o Domain-specific modeling languages

.... and all the other good stuff for building and nurturing healthy
software systems

Colorado State University

Gompuoier Science Department

6/21/12

The power of models: Supports system thinking

| am building
a cathedral

| am cutting
stones

Colorado State University

Gompoier Science Department

6/21/12

10

THE FALL

6/21/12

Colorado State University

Gompoier Science Department

11

Population
Survey

Prel;mmary rade Study: Final Site Survey
ame Selection Mammoth vs Game Selection
T Tiger vs Rabbit
h 4 « ; Site PeraraTlO!’D
- i Site Selection

Meat Meat p
Requirements i — -
Review Preliminary Hunt Leader Final
Hunting Plan Chosen Hunting Plan
Weapon -
Preliminary

Requirements
Game (MRR
Sightings
Selection Weapon
rade Study: - \ygeveiobment Hunting Review

// [Preliminary j E de Sk
n Rock vs Spear (PHR)

Hunter Se!ecno
Final btain Blessing
: _ Hunter Selection of Great God -
[Sr_te mspectaogj Thag /
7/
@:-)at Distribu!ioD
Plan

Critical
Hunting Neathe
Review _
(CHR)

Transport to DISTrIblHP J

/’-’@atch Game Kill Game nga }ﬂ‘
Chase Gama s £ "1\ Yes, but Og
Get Caught Cﬁgfigaﬁf&% HENTHNS assures me th
by Game o \ \ . | this will improve
’ L1 | our efficiency
Lose Game | don't know, it

Y| and keep us
seemed easier ,\I_J ahead of those
when we just ‘

N went hunting. / T)!\) ?rﬁhbéle\‘/allggs/
Why the Neanderthals became extinct.

Hunt
Readiness
Review
(HRR)

Hunter
Inspection

Current perceptions on MDD
MDD research is dying or dead

o A positive view: MDD has been a success in practice; very few
intellectually challenging problems left for researchers
The remaining problems are messy, but not intellectually challenging
o Another view: MDE targets “wicked problems”

“(effective MDD solutions) can only be (obtained) through ... costly
experimentation, and systematic accumulation and examination of
modeling and software development experience” (FOSE 2007 paper
on Future of MDD)

The messy problems are intellectually challenging
MDD practice is dying or dead
o Success stories seem to be the exception rather than the norm
o Too much hype, not enough (practical) substance
o Use associated with significant accidental complexities

Colorado State Un

6/21/12 Gompuier Science Hrnarimem i’

Why has MDD not taken off?

- —

*Na’l' MV\ '\'o Szale.,

Colorado S’Iute University
Gompuier Science Nepariment

6/21/12

14

Where’s the friction?

Technological
2 Inadequate MDD technologies
Sociological

o Competing perceptions, paradigms, methods: The
fishbowl effect

Pedagogical

o Inadequate understanding of how to develop,
nurture modeling and abstraction skills

Colorado State Univer

sity
6/21/12 Gompuoier Science Department 15

‘ The problem with some MDD
technologies: Scalability

BreakTaker.com

Colorado State University

Gompuoter Science Depariment

6/21/12

16

‘ The problem with some MDD
technologies: Overkill
FAIL i

University
GCompuier Science Depariment

6/21/12

17

Tool usage friction areas

Tools are too heavyweight
a Difficult to learn, operate, interoperate

Not enough attention paid to tool
usability

0 Tool developers arbitrarily impose
working style on tool users

Colorado S.tafe University
6/21/12 Gompoter Science Depariment

18

Tool development friction areas

Costly to develop; a significantly huge
investment.

Complexity and scale problems arise because
of perceived need to support many types of
usages

Knowledge Management Problem

o New tools often start from scratch

o Often share similar features

Current tool platforms require expert
knowledge to use effectively

Colorado State U

niversity
Gompuoier Science Department

Towards standard tool metamodels

Apply meta-modeling principles to tools to produce a
standard for modeling tools.

o Standard should address: functionality; usability;
iInteroperability; modularity.

Tool models will support: slices (restrictions to
coherent functional sub-sets); merge (tool-chains) ;
transformation (reuse).

Domain specificity through application of model
based techniques to existing tools.

Knowledge Management Problem addressed
through consolidation of tool platforms.

Commercial IP resides in both tool platforms and
tool models.

o Existing platforms can process tool models.

Colorado Sta Un

Gompoier SGIEIIGP llrnarimem

Sociological challenges: The fishbowl etftect

Colorado State Ur
rl]ﬂl[]lﬂﬁl’ sScience I]Pllal'iﬂl[’lﬂ

6/21/12

21

“Your favorite paradigm” at the center of the software development
universe

Colorado State University

Gomputer Science Nlepartment

6/21/12

22

Sociological friction areas
In search of a single unifying theory of
software development: Competing
development ideologies or "schools of
thought”
o Agile vs ...
a AOMvs ...
o Architectural design vs ...
o Component vs ...
a2 FMs vs ...
o Transformative vs compositional vs ...
o DSMLs vs UML profiles vs ...

Colorado State U

niversity
Gompuoier Science Department

6/21/12

23

What we should have learned

There is no single unifying software
engineering “theory” or ideology!

o Software endeavors are too diverse and span a
wide range of known, anticipated, and “yet to be
uncovered” opportunities to make a single
“theory” viable or useful

A new perspective: Leveraging the best
aspects of multiple “theories”, ideologies

o Rather than a unified theory of software

development we should be developing families of
theories ...

Colorado State U

niversity
Gompuier Science Department

6/21/12 24

Addressing the problem

The community needs to develop deep understanding of
strengths and limitations of different software
development approaches

o Comparing Modeling Approaches (CMA) MODELS workshops:
Inspired by activities at Barbados AOM workshop organized by
Joerg Kienzle

o Need evaluation criteria for situating methods, techniques in
software development landscape

Need to support sharing of modeling and software

development expeience

o The Open Model Initiative — Austria/Germany

o The Share repository — Pieter Van Gorp

o PlanetMDE

o The ReMoDD project

Colorado State Un

Gompuier Science Hrnarimem

6/21/12 25

Pedagogical Issues

Learning a modeling language is easy;
learning how to model is difficult

Colorado State U

niversity
Gomputer Science Nlepartment

6/21/12

26

Why do some students tind modeling
difficult?

Tools

o Many existing modeling tools do introduce significant
accidental complexity

Poorly developed abstraction skills

Significant effort invested on learning how “think” in
terms of a programming language

We know that

o learning a modeling language is not enough;

o students need to develop ability to identify the “right”
abstractions

Colorado State Uni

1iversity
] Comniier Science Nepartment

6/21/12 MODH 27

Finding the right abstractions

Modeling must be purpose-driven

How do we teach students to develop
abstractions that are fit-for-purpose?

Colorado .S:Illtc’ University
GCompnier Science Nepariment

6/21/12 MODH 28

Problems students face

How do we decompose a problem or
solution?

What information should be in a model
and at what level of abstraction should it
be expressed?

How can we determine if the abstractions
we use are “fit-for-purpose”?

How can we determine if our model is of
“good” quality”?

Colorado State Univer

sity
6/21/12 MODH Comniier Science Nepartment %0

Why Johnny can’t model and Jane

can

Hypothesis: A good modeler is a good
programmer; a good programmer is not
always a good modeler

Modeling requires programming and
abstraction skills

o Abstraction skills amplify development skills

programs produced by programmers with good
abstraction skills should be of significantly better quality

Colorado State Un

iversity
6/21/12 MODLI Comnnier Science lluErimBm 30

“I'raditional” approach to teaching
modeling techniques

Introducing modeling concepts using a ‘waterfall’

approach

o Requirements modeling

o Architecture modeling

o Detailed design modeling

Top-down approach reinforced by popular modeling

textbooks
Top-down modeling approach can overwhelm students
whose previous experience base consists solely of
developing small programs with fully specified
requirements

Colorado State Uni

versity
6/21/12 MODH Comniier Science Nepartment 3

An alternative bottom-up approach

From modeling-in-the-small to
modeling-in-the-large
0 Modeling-in-the-small: Focus on use of
models to describe program designs
Bridging small abstraction gaps
0 Modeling-in-the-large: Extend focus to

use of models throughout the
development lifecycle (and beyond)

Managing wider abstraction gaps

Colorado S.tufe University
6/21/12 N Lomputer science Nepariment

32

When, where, what

Introductory Programming: lllustrate OO
programming concepts through models

o Program structure: use class diagrams in introductory
OO programming courses to illustrate program
structure

o Program behavior: use sequence diagrams to

illustrate how objects interact in an OO design
Basic Programming (basic data structures &
algorithms): Using models to conceptualize
program designs

o Students required to develop initial models of their
designs before coding solutions to small problems

Colorado State Un

1iversity
] Gamniier Science Nepariment

6/21/12 MODE 33

Developing abstractions skills

Advanced Programming: Using models to
conceptualize more complex program
designs

o Present and discuss examples of good and bad
program designs

Software Engineering: Developing
modeling-in-the large skills
o Use of design studios to nurture abstraction skills

o Present and discuss examples of good and bad
modeling practices

Colorado State Univer

sity
6/21/12 MODH Comniier Science Nepartment 24

It would be good to have ...

Modeling patterns and anti-patterns that distill
expert modeling experience

A repository of models that illustrate good and

bad modeling practices (coming soon in
ReMoDD)

Text books that focus on developing modeling
skills rather than on covering syntactic and
semantic language concepts

Lightweight modeling tools that tolerate
iIncompleteness and support exploratory design.

Colorado S.tufe University
6/21/12 MODH Gommiier Science Nepartment

35

THE RISE OF MDD

Colorado State University

6/21/12 Gompuier Science Department

Promising approaches

Supporting practical development of domain-specific
modeling languages (DSMLs)

o Integrating metamodels and models of computations (GeMoC
and ModeHel' X initiative)

o Supporting families of DSMLs and associated toolsets (and their
evolution)

Supporting exploratory software development
o Model evolution (differencing, slicing, composition)
o Usable tools and “lightweight” analysis

o Software development as a search problem

Enabling a new class of software systems through use of
models@run.time

Application of MDD in other domains

Colorado State University

6/21/12 Gomputer Science Depariment .

‘MDD and Optimizing Compilers:

tale of two communities

Coggtaﬁdo
University
F

Mélange SE group

Optimizing

Compilers MDE

Cairn | Triskell
(.) %‘ I R I S A &Zm.m,.m/.m.m,

lo S University
Jepariment

Colorado f_lulu
Gompuier Science [

38

Optimizing Compilers

Goal: generate “efficient” code
o Execution time

o Energy consumption

o Code size

Wide range of optimizations

o Register allocation

o Dead code elimination

o Automatic parallelization
o Run-time optimizations

Colorado State Univer

sity
Gompuoier Science Department

39

Optimizing Compiler Research

Prototype implementations
o “Proof of Concept”
o Evaluation

Compilers are complicated pieces of software
o Need for rapid development

o Development spans generations of students

o Performance of compiler prototype not critical

Colorado State Univer

sity
Gompuoier Science Department 40

Optimizing Compiler Examples

= High-level flow of two research compilers:

(DSL \

[ostm)

Optimizations

\

N

Analyses

v
Execution
Strategies CodeGen Model

y

Code Generation Framework

| SystemC

i
CIR Target Independent
Optimizations
T Platform
Partitioning *<SpecificatiorD
Speed/Area Processor
Constraints Description

<-.

]
HW Accelerator ASIP Code
Generation Generation
interactio
HW Model

/ \ VHDL /‘ \\ ASIP D

Colorado State University

Gomputer Science Nlepartment

1.Parse source language

2.Transform intermediate
representations (IRs) for
efficiency. May take
domain specific
knowledge as additional
inputs.

3.Output code or binary

41

Research Compiler Challenges

Maintainable and Sustainable Code
o Developers may not have good SE background

Structural Validity of IR
o Is the IR consistent after parsing/transformation?

Complex Querying of IR

2 Find where to apply transformations

Interfacing with External Tools
2 Avoid as much re-implementation as possible

Colorado State U

niversity
Gompuoier Science Department 42

‘ Bridging with MDE

= View compiler IRs as models

DSLs and
Tooling
Model Transformations
and Analyses

Code Generation

(oman) ()

Colorado State Uni

niversity
Gompoier Science Department

43

43

Challenges

= Analyses and Manipulation of IRs
DSL Structural

—raa Validation e

— | —
/ Target Independent
< DSL IR Optimizations CIR > L gptimiz?t)i?:ns

> \ > 'A
o
\ Specification

eed/Area
- C | Constraints Description
CodeGen Model o m p eX / [

Querying and coelerator
Transformations

\ Generation

|
HW Model '
N

SystemC VHDL

C+OpenMP

C+MPI Binary for
ASIP

Colorado State University

Gompuier Science Department 44

‘ Challenges and MDE Solutions

= Analyses and Manipulation of IRs
st Structural

—raa F— Validation . m

5 — Structural Properties on —
et In naen:
< DSL IR Optimizations } mOdels (Conformity) CIR > ,ar(g)pumlz?;leons }
- — OCL constraints ,4

- 1
-
Specification

~ T /
H Speed/Area Processor
H . & C O m p | e X Constraints Description

Execution =

CodeGen Model h Que rying an d

Transformation |

Accelerator
\ Generation

HW Model '
N

SystemC VHDL

OCL queries
M2M tools

Rewriting rules

C+OpenMP

Binary for
ASIP

Colorado State University

Gompuier Science Department

45

Challenges

= Domain specific knowledge is heavily
utilized

Domain Specific

Knowledge
Representation \
Target Independent

Optimizations

< DSL IR) Optimizations/

Binary for
< C) @-OpenME ASIP

Colorado State University

GCompoter Science Department

46

‘ Challenges and MDE Solutions

= Domain specific knowledge is heavily
utilized

Target Independent

oY yreTeRE N
-base S ¥" —

Generative approaches Spesiication

(editor, parser) speed,A,ea }
Constramts Description

Accelerator
Generauon

> Domain Specific
Knowledge

+

CodeGen Model]

Executiol ‘
Strategies

Binary for
ASIP

Colorado S'tule University
Gomputer Science Nepartment 47

Challenges

= Code generation and external tools

DSL . C
Code Generation -

Optimizatio?!

Target Independent
Optimizations

(term rewriting, ML, LP, CSP, ...

oning = oo
Use of External Tools
N

Processor
Description

Geperation

HW Evccelerator

T
< © > @OpenME [(‘SystemC) <VHDL>} (Birfggor)

JY

Colorado State University

Gompuier Science Department

48

‘ Challenges and MDE Solutions

= Code generation and external tools

DSL ; c
Code Generation " -

 pasng | e
QTR M2T tools (Xpand/Xtend) Mmi‘ﬁ?ﬁ%m
N

v

/ eattgnng (oo
Use of External Tools

/\Speed/Area

Description

! (term rewriting, ML, LP, CSP, ...) IE

Execution
— MetatOO |) E eration

interactio

Metamodel instrumentation

)
Defining new generative tools mm
=\~ } }

C C+OpenMP C+MPI Systemc> <VHDL> (B"K‘gg‘")

Gompuier Science Department 49

Colorado State University

In conclusion

The single “take away” from this talk

We need to change the “fishbowl” view of

software problems

o Find ways to think differently about software
system problems; a change in perspective may

help turn essential complexity into accidental
complexity

o but beware, a change in perspective may also
make things worst!

Colorado State U

niversity
Gomputer Science Nlepartment

6/21/12 50

Beware of escaping the fishbowl!

\)

Colorado f_lulu University
Gompoter Science Department

6/21/12

51

PROGRLESS

is [MPOSSIBLE
W ITHOUT CHANGE.

& those uko cdhhot
CHANGE THEIR 7272inds

C%A NINOT
NGE A@\tky P

- GageWS&u

Colorado S’Iute University
Gomputer Science Nlepartment

6/21/12

