
The Fall & Rise of Model Driven
Development (MDD)
(Why we need to rethink MDD)

Robert B. France
Dept. of Computer Science
Colorado State University

USA
france@cs.colostate.edu

6/21/12 2

Fighting the software beast

Is the beast really in the software system?

6/21/12 3

Is what we consider to be essential software
complexity really accidental problem or solution
complexity?

Or is the beast in the software development
perceptions of problems, paradigms,
processes, methods, tools, that we hold on
to?

HOW DID WE GET HERE?

6/21/12 4

Modeling practices: The journey
  70’s-90’s: Computer-Aided Software Engineering

(CASE)
  Focus on descriptive models used primarily for

communication/documentation, and for simulation
(e.g., executable data flow diagrams)

  Modeling treated as an informal, sketching activity
  Flow charts, SA/SD, early OO modeling languages

  70’s - : Formal specification techniques
  Focus on use prescriptive models used primarily for

formally specifying systems
  Z, B, Petri Nets, ASM, CCS, CSP, SDL, …, Alloy,

model checking, Coq, Isabelle

6/21/12 5

The journey - 2

  90’s - : Generative approaches
  Focus on use of prescriptive models as generators of

software artifacts (implementations, configuration
scripts, test cases, …)

  Models treated as core software development artifacts
  MD* (e.g., MDA, MDE, MDD)

6/21/12 6

6/21/12

A view of MDD

  “Model-Driven Development” (MDD) is
concerned with
  reducing accidental complexities associated with

developing complex software
  through use of technologies that support rigorous

transformation of abstractions to software
implementations

MDD is concerned with developing software
tools to support the work of software
engineers

7

Is modeling essential to software
development?

Software development is a modeling activity

How can we better leverage modeling
techniques?

MDD Principles
  Separation of concerns

  Abstraction
  Separation of software views/perspectives

  Automation/formality
  Support for rigorous analysis and prediction
  Support for artifact generation

  Incrementality
  Support for synthesizing wholes from parts
  Aspect-oriented modeling

  Reusability
  Patterns
  Domain-specific modeling languages

  …. and all the other good stuff for building and nurturing healthy
software systems

6/21/12 9

The power of models: Supports system thinking

6/21/12 10

THE FALL

6/21/12 11

Current perceptions on MDD
  MDD research is dying or dead

  A positive view: MDD has been a success in practice; very few
intellectually challenging problems left for researchers
  The remaining problems are messy, but not intellectually challenging

  Another view: MDE targets “wicked problems”
  “(effective MDD solutions) can only be (obtained) through … costly

experimentation, and systematic accumulation and examination of
modeling and software development experience” (FOSE 2007 paper
on Future of MDD)

  The messy problems are intellectually challenging

  MDD practice is dying or dead
  Success stories seem to be the exception rather than the norm
  Too much hype, not enough (practical) substance
  Use associated with significant accidental complexities

6/21/12 13

Why has MDD not taken off?

6/21/12 14

Where’s the friction?

  Technological
  Inadequate MDD technologies

  Sociological
  Competing perceptions, paradigms, methods: The

fishbowl effect
  Pedagogical

  Inadequate understanding of how to develop,
nurture modeling and abstraction skills

6/21/12 15

The problem with some MDD
technologies: Scalability

6/21/12 16

The problem with some MDD
technologies: Overkill

6/21/12 17

Tool usage friction areas

  Tools are too heavyweight
  Difficult to learn, operate, interoperate

  Not enough attention paid to tool
usability
  Tool developers arbitrarily impose

working style on tool users

6/21/12 18

Tool development friction areas
  Costly to develop; a significantly huge

investment.
  Complexity and scale problems arise because

of perceived need to support many types of
usages

  Knowledge Management Problem
  New tools often start from scratch
  Often share similar features

  Current tool platforms require expert
knowledge to use effectively

Towards standard tool metamodels
  Apply meta-modeling principles to tools to produce a

standard for modeling tools.
  Standard should address: functionality; usability;

interoperability; modularity.
  Tool models will support: slices (restrictions to

coherent functional sub-sets); merge (tool-chains) ;
transformation (reuse).

  Domain specificity through application of model
based techniques to existing tools.

  Knowledge Management Problem addressed
through consolidation of tool platforms.

  Commercial IP resides in both tool platforms and
tool models.
  Existing platforms can process tool models.

Sociological challenges: The fishbowl effect

6/21/12 21

6/21/12 22

“Your favorite paradigm” at the center of the software development
universe

Sociological friction areas
  In search of a single unifying theory of

software development: Competing
development ideologies or ”schools of
thought”
  Agile vs …
  AOM vs …
  Architectural design vs …
  Component vs …
  FMs vs …
  Transformative vs compositional vs …
  DSMLs vs UML profiles vs …

6/21/12 23

What we should have learned
  There is no single unifying software

engineering “theory” or ideology!
  Software endeavors are too diverse and span a

wide range of known, anticipated, and “yet to be
uncovered” opportunities to make a single
“theory” viable or useful

  A new perspective: Leveraging the best
aspects of multiple “theories”, ideologies
  Rather than a unified theory of software

development we should be developing families of
theories …

6/21/12 24

Addressing the problem
  The community needs to develop deep understanding of

strengths and limitations of different software
development approaches
  Comparing Modeling Approaches (CMA) MODELS workshops:

Inspired by activities at Barbados AOM workshop organized by
Joerg Kienzle

  Need evaluation criteria for situating methods, techniques in
software development landscape

  Need to support sharing of modeling and software
development expeience
  The Open Model Initiative – Austria/Germany
  The Share repository – Pieter Van Gorp
  PlanetMDE
  The ReMoDD project

6/21/12 25

Pedagogical Issues

6/21/12 26

Learning a modeling language is easy;
learning how to model is difficult

6/21/12 MODELS 2011 Educators' Symposium

Why do some students find modeling
difficult?
  Tools

  Many existing modeling tools do introduce significant
accidental complexity

  Poorly developed abstraction skills
  Significant effort invested on learning how “think” in

terms of a programming language
  We know that

  learning a modeling language is not enough;
  students need to develop ability to identify the “right”

abstractions

27

6/21/12 MODELS 2011 Educators' Symposium

Finding the right abstractions

  Modeling must be purpose-driven

  How do we teach students to develop
abstractions that are fit-for-purpose?

28

Problems students face

  How do we decompose a problem or
solution?

  What information should be in a model
and at what level of abstraction should it
be expressed?

  How can we determine if the abstractions
we use are “fit-for-purpose”?

  How can we determine if our model is of
“good” quality?

6/21/12 MODELS 2011 Educators' Symposium 29

6/21/12 MODELS 2011 Educators' Symposium

Why Johnny can’t model and Jane
can
  Hypothesis: A good modeler is a good

programmer; a good programmer is not
always a good modeler

  Modeling requires programming and
abstraction skills
  Abstraction skills amplify development skills

  programs produced by programmers with good
abstraction skills should be of significantly better quality

30

“Traditional” approach to teaching
modeling techniques
  Introducing modeling concepts using a ‘waterfall’

approach
  Requirements modeling
  Architecture modeling
  Detailed design modeling

  Top-down approach reinforced by popular modeling
textbooks

  Top-down modeling approach can overwhelm students
whose previous experience base consists solely of
developing small programs with fully specified
requirements

6/21/12 MODELS 2011 Educators' Symposium 31

An alternative bottom-up approach

  From modeling-in-the-small to
modeling-in-the-large
  Modeling-in-the-small: Focus on use of

models to describe program designs
  Bridging small abstraction gaps

  Modeling-in-the-large: Extend focus to
use of models throughout the
development lifecycle (and beyond)
  Managing wider abstraction gaps

6/21/12 MODELS 2011 Educators' Symposium 32

When, where, what
  Introductory Programming: Illustrate OO

programming concepts through models
  Program structure: use class diagrams in introductory

OO programming courses to illustrate program
structure

  Program behavior: use sequence diagrams to
illustrate how objects interact in an OO design

  Basic Programming (basic data structures &
algorithms): Using models to conceptualize
program designs
  Students required to develop initial models of their

designs before coding solutions to small problems

6/21/12 MODELS 2011 Educators' Symposium 33

Developing abstractions skills

  Advanced Programming: Using models to
conceptualize more complex program
designs
  Present and discuss examples of good and bad

program designs
  Software Engineering: Developing

modeling-in-the large skills
  Use of design studios to nurture abstraction skills
  Present and discuss examples of good and bad

modeling practices

6/21/12 MODELS 2011 Educators' Symposium 34

It would be good to have …
  Modeling patterns and anti-patterns that distill

expert modeling experience
  A repository of models that illustrate good and

bad modeling practices (coming soon in
ReMoDD)

  Text books that focus on developing modeling
skills rather than on covering syntactic and
semantic language concepts

  Lightweight modeling tools that tolerate
incompleteness and support exploratory design.

6/21/12 MODELS 2011 Educators' Symposium 35

THE RISE OF MDD

6/21/12 36

Promising approaches
  Supporting practical development of domain-specific

modeling languages (DSMLs)
  Integrating metamodels and models of computations (GeMoC

and ModeHel’X initiative)
  Supporting families of DSMLs and associated toolsets (and their

evolution)

  Supporting exploratory software development
  Model evolution (differencing, slicing, composition)
  Usable tools and “lightweight” analysis
  Software development as a search problem

  Enabling a new class of software systems through use of
models@run.time

  Application of MDD in other domains

6/21/12 37

MDD and Optimizing Compilers: A
tale of two communities

38

Mélange

Cairn Triskell

MDE Optimizing
Compilers

SE group

Optimizing Compilers

  Goal: generate “efficient” code
  Execution time
  Energy consumption
  Code size

  Wide range of optimizations
  Register allocation
  Dead code elimination
  Automatic parallelization
  Run-time optimizations

39

Optimizing Compiler Research

  Prototype implementations
  “Proof of Concept”
  Evaluation

  Compilers are complicated pieces of software
  Need for rapid development
  Development spans generations of students
  Performance of compiler prototype not critical

40

Optimizing Compiler Examples

  High-level flow of two research compilers:

41

1.Parse source language

2.Transform intermediate
representations (IRs) for
efficiency. May take
domain specific
knowledge as additional
inputs.

3.Output code or binary

Research Compiler Challenges
  Maintainable and Sustainable Code

  Developers may not have good SE background
  Structural Validity of IR

  Is the IR consistent after parsing/transformation?
  Complex Querying of IR

  Find where to apply transformations
  Interfacing with External Tools

  Avoid as much re-implementation as possible

42

Bridging with MDE
  View compiler IRs as models

43 43

DSLs and
Tooling

Model Transformations
and Analyses

Code Generation

Challenges

  Analyses and Manipulation of IRs

44

Structural
Validation
Structural
Validation
Structural
Validation
Structural
Validation

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformations

Challenges and MDE Solutions

  Analyses and Manipulation of IRs

45

Structural
Validation
Structural
Validation
Structural
Validation
Structural
Validation

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Structural Properties on
models (conformity)

OCL constraints

OCL queries
M2M tools

Rewriting rules

Challenges
  Domain specific knowledge is heavily

utilized

46

Domain Specific
Knowledge

Representation

Challenges and MDE Solutions
  Domain specific knowledge is heavily

utilized

47

Domain Specific
Knowledge

Representation

MDE-based DSLs
Generative approaches

(editor, parser)

Challenges
  Code generation and external tools

48

Domain Specific Knowledge
as additional inputs Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Challenges and MDE Solutions
  Code generation and external tools

49

Domain Specific Knowledge
as additional inputs Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Use of External Tools
(term rewriting, ML, LP, CSP, …)

M2T tools (Xpand/Xtend)

Metatools
Metamodel instrumentation

Defining new generative tools

In conclusion

The single “take away” from this talk
  We need to change the “fishbowl” view of

software problems
  Find ways to think differently about software

system problems; a change in perspective may
help turn essential complexity into accidental
complexity

  but beware, a change in perspective may also
make things worst!

6/21/12 50

Beware of escaping the fishbowl!

6/21/12 51

6/21/12 52

