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Is the beast really in the software system?

Or is the beast in the software development
perceptions of problems, paradigms,
processes, methods, tools, that we hold on
to?

Is what we consider to be essential software

complexity really accidental problem or solution
complexity?
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HOW DID WE GET HERE?
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Modeling practices: The journey

70’s-90’s: Computer-Aided Software Engineering
(CASE)

o Focus on descriptive models used primarily for
communication/documentation, and for simulation
(e.g., executable data flow diagrams)

o Modeling treated as an informal, sketching activity
o Flow charts, SA/SD, early OO modeling languages

70’s - : Formal specification techniques

o Focus on use prescriptive models used primarily for
formally specifying systems

o Z, B, Petri Nets, ASM, CCS, CSP, SDL, ..., Alloy,
model checking, Coq, Isabelle
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The journey - 2

90’s - : Generative approaches

o Focus on use of prescriptive models as generators of
software artifacts (implementations, configuration
scripts, test cases, ...)

o Models treated as core software development artifacts
2 MD* (e.g., MDA, MDE, MDD)
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A view of MDD

“Model-Driven Development” (MDD) is
concerned with

o reducing accidental complexities associated with
developing complex software

o through use of technologies that support rigorous
transformation of abstractions to software
Implementations

MDD is concerned with developing software
tools to support the work of software
engineers
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Is modeling essential to software
development?

Software development is a modeling activity

How can we better leverage modeling
techniques?
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MDD Principles

Separation of concerns

o Abstraction

o Separation of software views/perspectives
Automation/formality

o Support for rigorous analysis and prediction
o Support for artifact generation
Incrementality

o Support for synthesizing wholes from parts
o Aspect-oriented modeling

Reusability

o Patterns

o Domain-specific modeling languages

.... and all the other good stuff for building and nurturing healthy
software systems
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The power of models: Supports system thinking

| am building
a cathedral

| am cutting
stones
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THE FALL
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Current perceptions on MDD
MDD research is dying or dead

o A positive view: MDD has been a success in practice; very few
intellectually challenging problems left for researchers
The remaining problems are messy, but not intellectually challenging
o Another view: MDE targets “wicked problems”

“(effective MDD solutions) can only be (obtained) through ... costly
experimentation, and systematic accumulation and examination of
modeling and software development experience” (FOSE 2007 paper
on Future of MDD)

The messy problems are intellectually challenging
MDD practice is dying or dead
o Success stories seem to be the exception rather than the norm
o Too much hype, not enough (practical) substance
o Use associated with significant accidental complexities
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Why has MDD not taken off?
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Where’s the friction?

Technological
2 Inadequate MDD technologies
Sociological

o Competing perceptions, paradigms, methods: The
fishbowl effect

Pedagogical

o Inadequate understanding of how to develop,
nurture modeling and abstraction skills
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‘ The problem with some MDD
technologies: Scalability

BreakTaker.com
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‘ The problem with some MDD
technologies: Overkill
FAIL i
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Tool usage friction areas

Tools are too heavyweight
a Difficult to learn, operate, interoperate

Not enough attention paid to tool
usability

0 Tool developers arbitrarily impose
working style on tool users
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Tool development friction areas

Costly to develop; a significantly huge
investment.

Complexity and scale problems arise because
of perceived need to support many types of
usages

Knowledge Management Problem

o New tools often start from scratch

o Often share similar features

Current tool platforms require expert
knowledge to use effectively
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Towards standard tool metamodels

Apply meta-modeling principles to tools to produce a
standard for modeling tools.

o Standard should address: functionality; usability;
iInteroperability; modularity.

Tool models will support: slices (restrictions to
coherent functional sub-sets); merge (tool-chains) ;
transformation (reuse).

Domain specificity through application of model
based techniques to existing tools.

Knowledge Management Problem addressed
through consolidation of tool platforms.

Commercial IP resides in both tool platforms and
tool models.

o Existing platforms can process tool models.
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Sociological challenges: The fishbowl etftect
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“Your favorite paradigm” at the center of the software development
universe
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Sociological friction areas
In search of a single unifying theory of
software development: Competing
development ideologies or "schools of
thought”
o Agile vs ...
a AOMvs ...
o Architectural design vs ...
o Component vs ...
a2 FMs vs ...
o Transformative vs compositional vs ...
o DSMLs vs UML profiles vs ...
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What we should have learned

There is no single unifying software
engineering “theory” or ideology!

o Software endeavors are too diverse and span a
wide range of known, anticipated, and “yet to be
uncovered” opportunities to make a single
“theory” viable or useful

A new perspective: Leveraging the best
aspects of multiple “theories”, ideologies

o Rather than a unified theory of software

development we should be developing families of
theories ...
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Addressing the problem

The community needs to develop deep understanding of
strengths and limitations of different software
development approaches

o Comparing Modeling Approaches (CMA) MODELS workshops:
Inspired by activities at Barbados AOM workshop organized by
Joerg Kienzle

o Need evaluation criteria for situating methods, techniques in
software development landscape

Need to support sharing of modeling and software

development expeience

o The Open Model Initiative — Austria/Germany

o The Share repository — Pieter Van Gorp

o PlanetMDE

o The ReMoDD project
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Pedagogical Issues

Learning a modeling language is easy;
learning how to model is difficult
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Why do some students tind modeling
difficult?

Tools

o Many existing modeling tools do introduce significant
accidental complexity

Poorly developed abstraction skills

Significant effort invested on learning how “think” in
terms of a programming language

We know that

o learning a modeling language is not enough;

o students need to develop ability to identify the “right”
abstractions
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Finding the right abstractions

Modeling must be purpose-driven

How do we teach students to develop
abstractions that are fit-for-purpose?
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Problems students face

How do we decompose a problem or
solution?

What information should be in a model
and at what level of abstraction should it
be expressed?

How can we determine if the abstractions
we use are “fit-for-purpose”?

How can we determine if our model is of
“good” quality”?
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Why Johnny can’t model and Jane

can

Hypothesis: A good modeler is a good
programmer; a good programmer is not
always a good modeler

Modeling requires programming and
abstraction skills

o Abstraction skills amplify development skills

programs produced by programmers with good
abstraction skills should be of significantly better quality
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“I'raditional” approach to teaching
modeling techniques

Introducing modeling concepts using a ‘waterfall’

approach

o Requirements modeling

o Architecture modeling

o Detailed design modeling

Top-down approach reinforced by popular modeling

textbooks
Top-down modeling approach can overwhelm students
whose previous experience base consists solely of
developing small programs with fully specified
requirements
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An alternative bottom-up approach

From modeling-in-the-small to
modeling-in-the-large
0 Modeling-in-the-small: Focus on use of
models to describe program designs
Bridging small abstraction gaps
0 Modeling-in-the-large: Extend focus to

use of models throughout the
development lifecycle (and beyond)

Managing wider abstraction gaps
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When, where, what

Introductory Programming: lllustrate OO
programming concepts through models

o Program structure: use class diagrams in introductory
OO programming courses to illustrate program
structure

o Program behavior: use sequence diagrams to

illustrate how objects interact in an OO design
Basic Programming (basic data structures &
algorithms): Using models to conceptualize
program designs

o Students required to develop initial models of their
designs before coding solutions to small problems

Colorado State Un

1iversity
] Gamniier Science Nepariment

6/21/12 MODE 33



Developing abstractions skills

Advanced Programming: Using models to
conceptualize more complex program
designs

o Present and discuss examples of good and bad
program designs

Software Engineering: Developing
modeling-in-the large skills
o Use of design studios to nurture abstraction skills

o Present and discuss examples of good and bad
modeling practices
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It would be good to have ...

Modeling patterns and anti-patterns that distill
expert modeling experience

A repository of models that illustrate good and

bad modeling practices (coming soon in
ReMoDD)

Text books that focus on developing modeling
skills rather than on covering syntactic and
semantic language concepts

Lightweight modeling tools that tolerate
iIncompleteness and support exploratory design.

Colorado S.tufe University
6/21/12 MODH Gommiier Science Nepartment

35



THE RISE OF MDD
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Promising approaches

Supporting practical development of domain-specific
modeling languages (DSMLs)

o Integrating metamodels and models of computations (GeMoC
and ModeHel' X initiative)

o Supporting families of DSMLs and associated toolsets (and their
evolution)

Supporting exploratory software development
o Model evolution (differencing, slicing, composition)
o Usable tools and “lightweight” analysis

o Software development as a search problem

Enabling a new class of software systems through use of
models@run.time

Application of MDD in other domains
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‘MDD and Optimizing Compilers:

tale of two communities
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Optimizing Compilers

Goal: generate “efficient” code
o Execution time

o Energy consumption

o Code size

Wide range of optimizations

o Register allocation

o Dead code elimination

o Automatic parallelization
o Run-time optimizations
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Optimizing Compiler Research

Prototype implementations
o “Proof of Concept”
o Evaluation

Compilers are complicated pieces of software
o Need for rapid development

o Development spans generations of students

o Performance of compiler prototype not critical
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Optimizing Compiler Examples

= High-level flow of two research compilers:
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Research Compiler Challenges

Maintainable and Sustainable Code
o Developers may not have good SE background

Structural Validity of IR
o Is the IR consistent after parsing/transformation?

Complex Querying of IR

2 Find where to apply transformations

Interfacing with External Tools
2 Avoid as much re-implementation as possible
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‘ Bridging with MDE

= View compiler IRs as models
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Challenges

= Analyses and Manipulation of IRs
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‘ Challenges and MDE Solutions

= Analyses and Manipulation of IRs
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Challenges

= Domain specific knowledge is heavily
utilized
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‘ Challenges and MDE Solutions

= Domain specific knowledge is heavily
utilized
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Challenges

= Code generation and external tools
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‘ Challenges and MDE Solutions

= Code generation and external tools
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In conclusion

The single “take away” from this talk

We need to change the “fishbowl” view of

software problems

o Find ways to think differently about software
system problems; a change in perspective may

help turn essential complexity into accidental
complexity

o but beware, a change in perspective may also
make things worst!

Colorado State U

niversity
Gomputer Science Nlepartment

6/21/12 50



Beware of escaping the fishbowl!
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