
The Fall & Rise of Model Driven
Development (MDD)
(Why we need to rethink MDD)

Robert B. France
Dept. of Computer Science
Colorado State University

USA
france@cs.colostate.edu

6/21/12 2

Fighting the software beast

Is the beast really in the software system?

6/21/12 3

Is what we consider to be essential software
complexity really accidental problem or solution
complexity?

Or is the beast in the software development
perceptions of problems, paradigms,
processes, methods, tools, that we hold on
to?

HOW DID WE GET HERE?

6/21/12 4

Modeling practices: The journey
  70’s-90’s: Computer-Aided Software Engineering

(CASE)
  Focus on descriptive models used primarily for

communication/documentation, and for simulation
(e.g., executable data flow diagrams)

  Modeling treated as an informal, sketching activity
  Flow charts, SA/SD, early OO modeling languages

  70’s - : Formal specification techniques
  Focus on use prescriptive models used primarily for

formally specifying systems
  Z, B, Petri Nets, ASM, CCS, CSP, SDL, …, Alloy,

model checking, Coq, Isabelle

6/21/12 5

The journey - 2

  90’s - : Generative approaches
  Focus on use of prescriptive models as generators of

software artifacts (implementations, configuration
scripts, test cases, …)

  Models treated as core software development artifacts
  MD* (e.g., MDA, MDE, MDD)

6/21/12 6

6/21/12

A view of MDD

  “Model-Driven Development” (MDD) is
concerned with
  reducing accidental complexities associated with

developing complex software
  through use of technologies that support rigorous

transformation of abstractions to software
implementations

MDD is concerned with developing software
tools to support the work of software
engineers

7

Is modeling essential to software
development?

Software development is a modeling activity

How can we better leverage modeling
techniques?

MDD Principles
  Separation of concerns

  Abstraction
  Separation of software views/perspectives

  Automation/formality
  Support for rigorous analysis and prediction
  Support for artifact generation

  Incrementality
  Support for synthesizing wholes from parts
  Aspect-oriented modeling

  Reusability
  Patterns
  Domain-specific modeling languages

  …. and all the other good stuff for building and nurturing healthy
software systems

6/21/12 9

The power of models: Supports system thinking

6/21/12 10

THE FALL

6/21/12 11

Current perceptions on MDD
  MDD research is dying or dead

  A positive view: MDD has been a success in practice; very few
intellectually challenging problems left for researchers
  The remaining problems are messy, but not intellectually challenging

  Another view: MDE targets “wicked problems”
  “(effective MDD solutions) can only be (obtained) through … costly

experimentation, and systematic accumulation and examination of
modeling and software development experience” (FOSE 2007 paper
on Future of MDD)

  The messy problems are intellectually challenging

  MDD practice is dying or dead
  Success stories seem to be the exception rather than the norm
  Too much hype, not enough (practical) substance
  Use associated with significant accidental complexities

6/21/12 13

Why has MDD not taken off?

6/21/12 14

Where’s the friction?

  Technological
  Inadequate MDD technologies

  Sociological
  Competing perceptions, paradigms, methods: The

fishbowl effect
  Pedagogical

  Inadequate understanding of how to develop,
nurture modeling and abstraction skills

6/21/12 15

The problem with some MDD
technologies: Scalability

6/21/12 16

The problem with some MDD
technologies: Overkill

6/21/12 17

Tool usage friction areas

  Tools are too heavyweight
  Difficult to learn, operate, interoperate

  Not enough attention paid to tool
usability
  Tool developers arbitrarily impose

working style on tool users

6/21/12 18

Tool development friction areas
  Costly to develop; a significantly huge

investment.
  Complexity and scale problems arise because

of perceived need to support many types of
usages

  Knowledge Management Problem
  New tools often start from scratch
  Often share similar features

  Current tool platforms require expert
knowledge to use effectively

Towards standard tool metamodels
  Apply meta-modeling principles to tools to produce a

standard for modeling tools.
  Standard should address: functionality; usability;

interoperability; modularity.
  Tool models will support: slices (restrictions to

coherent functional sub-sets); merge (tool-chains) ;
transformation (reuse).

  Domain specificity through application of model
based techniques to existing tools.

  Knowledge Management Problem addressed
through consolidation of tool platforms.

  Commercial IP resides in both tool platforms and
tool models.
  Existing platforms can process tool models.

Sociological challenges: The fishbowl effect

6/21/12 21

6/21/12 22

“Your favorite paradigm” at the center of the software development
universe

Sociological friction areas
  In search of a single unifying theory of

software development: Competing
development ideologies or ”schools of
thought”
  Agile vs …
  AOM vs …
  Architectural design vs …
  Component vs …
  FMs vs …
  Transformative vs compositional vs …
  DSMLs vs UML profiles vs …

6/21/12 23

What we should have learned
  There is no single unifying software

engineering “theory” or ideology!
  Software endeavors are too diverse and span a

wide range of known, anticipated, and “yet to be
uncovered” opportunities to make a single
“theory” viable or useful

  A new perspective: Leveraging the best
aspects of multiple “theories”, ideologies
  Rather than a unified theory of software

development we should be developing families of
theories …

6/21/12 24

Addressing the problem
  The community needs to develop deep understanding of

strengths and limitations of different software
development approaches
  Comparing Modeling Approaches (CMA) MODELS workshops:

Inspired by activities at Barbados AOM workshop organized by
Joerg Kienzle

  Need evaluation criteria for situating methods, techniques in
software development landscape

  Need to support sharing of modeling and software
development expeience
  The Open Model Initiative – Austria/Germany
  The Share repository – Pieter Van Gorp
  PlanetMDE
  The ReMoDD project

6/21/12 25

Pedagogical Issues

6/21/12 26

Learning a modeling language is easy;
learning how to model is difficult

6/21/12 MODELS 2011 Educators' Symposium

Why do some students find modeling
difficult?
  Tools

  Many existing modeling tools do introduce significant
accidental complexity

  Poorly developed abstraction skills
  Significant effort invested on learning how “think” in

terms of a programming language
  We know that

  learning a modeling language is not enough;
  students need to develop ability to identify the “right”

abstractions

27

6/21/12 MODELS 2011 Educators' Symposium

Finding the right abstractions

  Modeling must be purpose-driven

  How do we teach students to develop
abstractions that are fit-for-purpose?

28

Problems students face

  How do we decompose a problem or
solution?

  What information should be in a model
and at what level of abstraction should it
be expressed?

  How can we determine if the abstractions
we use are “fit-for-purpose”?

  How can we determine if our model is of
“good” quality?

6/21/12 MODELS 2011 Educators' Symposium 29

6/21/12 MODELS 2011 Educators' Symposium

Why Johnny can’t model and Jane
can
  Hypothesis: A good modeler is a good

programmer; a good programmer is not
always a good modeler

  Modeling requires programming and
abstraction skills
  Abstraction skills amplify development skills

  programs produced by programmers with good
abstraction skills should be of significantly better quality

30

“Traditional” approach to teaching
modeling techniques
  Introducing modeling concepts using a ‘waterfall’

approach
  Requirements modeling
  Architecture modeling
  Detailed design modeling

  Top-down approach reinforced by popular modeling
textbooks

  Top-down modeling approach can overwhelm students
whose previous experience base consists solely of
developing small programs with fully specified
requirements

6/21/12 MODELS 2011 Educators' Symposium 31

An alternative bottom-up approach

  From modeling-in-the-small to
modeling-in-the-large
  Modeling-in-the-small: Focus on use of

models to describe program designs
  Bridging small abstraction gaps

  Modeling-in-the-large: Extend focus to
use of models throughout the
development lifecycle (and beyond)
  Managing wider abstraction gaps

6/21/12 MODELS 2011 Educators' Symposium 32

When, where, what
  Introductory Programming: Illustrate OO

programming concepts through models
  Program structure: use class diagrams in introductory

OO programming courses to illustrate program
structure

  Program behavior: use sequence diagrams to
illustrate how objects interact in an OO design

  Basic Programming (basic data structures &
algorithms): Using models to conceptualize
program designs
  Students required to develop initial models of their

designs before coding solutions to small problems

6/21/12 MODELS 2011 Educators' Symposium 33

Developing abstractions skills

  Advanced Programming: Using models to
conceptualize more complex program
designs
  Present and discuss examples of good and bad

program designs
  Software Engineering: Developing

modeling-in-the large skills
  Use of design studios to nurture abstraction skills
  Present and discuss examples of good and bad

modeling practices

6/21/12 MODELS 2011 Educators' Symposium 34

It would be good to have …
  Modeling patterns and anti-patterns that distill

expert modeling experience
  A repository of models that illustrate good and

bad modeling practices (coming soon in
ReMoDD)

  Text books that focus on developing modeling
skills rather than on covering syntactic and
semantic language concepts

  Lightweight modeling tools that tolerate
incompleteness and support exploratory design.

6/21/12 MODELS 2011 Educators' Symposium 35

THE RISE OF MDD

6/21/12 36

Promising approaches
  Supporting practical development of domain-specific

modeling languages (DSMLs)
  Integrating metamodels and models of computations (GeMoC

and ModeHel’X initiative)
  Supporting families of DSMLs and associated toolsets (and their

evolution)

  Supporting exploratory software development
  Model evolution (differencing, slicing, composition)
  Usable tools and “lightweight” analysis
  Software development as a search problem

  Enabling a new class of software systems through use of
models@run.time

  Application of MDD in other domains

6/21/12 37

MDD and Optimizing Compilers: A
tale of two communities

38

Mélange

Cairn Triskell

MDE Optimizing
Compilers

SE group

Optimizing Compilers

  Goal: generate “efficient” code
  Execution time
  Energy consumption
  Code size

  Wide range of optimizations
  Register allocation
  Dead code elimination
  Automatic parallelization
  Run-time optimizations

39

Optimizing Compiler Research

  Prototype implementations
  “Proof of Concept”
  Evaluation

  Compilers are complicated pieces of software
  Need for rapid development
  Development spans generations of students
  Performance of compiler prototype not critical

40

Optimizing Compiler Examples

  High-level flow of two research compilers:

41

1.Parse source language

2.Transform intermediate
representations (IRs) for
efficiency. May take
domain specific
knowledge as additional
inputs.

3.Output code or binary

Research Compiler Challenges
  Maintainable and Sustainable Code

  Developers may not have good SE background
  Structural Validity of IR

  Is the IR consistent after parsing/transformation?
  Complex Querying of IR

  Find where to apply transformations
  Interfacing with External Tools

  Avoid as much re-implementation as possible

42

Bridging with MDE
  View compiler IRs as models

43 43

DSLs and
Tooling

Model Transformations
and Analyses

Code Generation

Challenges

  Analyses and Manipulation of IRs

44

Structural
Validation
Structural
Validation
Structural
Validation
Structural
Validation

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformations

Challenges and MDE Solutions

  Analyses and Manipulation of IRs

45

Structural
Validation
Structural
Validation
Structural
Validation
Structural
Validation

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Complex
Querying and

Transformation
s

Structural Properties on
models (conformity)

OCL constraints

OCL queries
M2M tools

Rewriting rules

Challenges
  Domain specific knowledge is heavily

utilized

46

Domain Specific
Knowledge

Representation

Challenges and MDE Solutions
  Domain specific knowledge is heavily

utilized

47

Domain Specific
Knowledge

Representation

MDE-based DSLs
Generative approaches

(editor, parser)

Challenges
  Code generation and external tools

48

Domain Specific Knowledge
as additional inputs Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Challenges and MDE Solutions
  Code generation and external tools

49

Domain Specific Knowledge
as additional inputs Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Code Generation

Use of External Tools
(term rewriting, ML, LP, CSP, …)

Use of External Tools
(term rewriting, ML, LP, CSP, …)

M2T tools (Xpand/Xtend)

Metatools
Metamodel instrumentation

Defining new generative tools

In conclusion

The single “take away” from this talk
  We need to change the “fishbowl” view of

software problems
  Find ways to think differently about software

system problems; a change in perspective may
help turn essential complexity into accidental
complexity

  but beware, a change in perspective may also
make things worst!

6/21/12 50

Beware of escaping the fishbowl!

6/21/12 51

6/21/12 52

