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Grammars and Languages are one 
of the most established areas of 

Computer Science
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Is Research on Grammars and 
Parsing Dead?

Why?

Why Not?
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Why?

● The most obvious and visible results have been 
achieved:
● Grammar classes
● Parsing algorithms
● Complexity
● Decidability

● The use of parsing in compilers is standard
● Parsing is just one (relatively simple)  aspect of 

compiling
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Why Not?

The Use Cases are changing:
– From batch use to interactive use

– From single language to multiple language

– From compiling to understanding and renovation

– From standard language to domain-specific 
language

– From textual grammar to graphical model

– ...
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Grammar Use Case #1:
Compilation versus Understanding
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Compilation is ...

● A well-defined process with well-defined 
input, output and constraints

● Input: source program in a fixed language 
with well-defined syntax and semantics

● Output: a fixed target language with well-
defined syntax and semantics

● Constraints are known (correctness, 
performance)

● A batch-like process
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Compilation is ...

Source

Target

Single, 
well defined,

 source

Single, 
well 

defined,
 target

A batch-like process with
clear constraints
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Understanding is ...

● An exploration process with as input
– system artifacts (source, documentation, 

tests, ...)

– implicit knowledge of its designers or maintainers
● There is no clear target language
● An interactive process:

– Extract elementary facts

– Abstract to get derived facts needed for analysis

– View derived facts through visualization/browsing
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Extract-Enrich-View Paradigm

Source code Documentation ...
Extract

Facts

View

Web pages Graphics ...

Enrich
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Examples of understanding 
problems

● Which programs call each others?
● Which programs use which databases?
● If we change this database record, which 

programs are affected?
● Which programs are more complex than 

others?
● How much code clones exist in the code?
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Grammar Use Case #1: Summary

There is a mismatch between 
– standard compilation techniques and 

– the needs for understanding and restructuring
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Grammar Use Case #2:
Software Renovation
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Some cars need maintenance ...
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… to replace proven technology ...

1931 Patrol 
Car
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... or proven-technology-inside ...

Cherrelyn Horse Car, Denver Colorado
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 The total volume of software is estimated at   
      7 * 109 function points

 1 FP = 128 lines of C or 107 lines of COBOL
 The volume of this volcano is

 750 Giga-lines of COBOL code, or
 900 Giga-lines of C code

Legacy Software

Printed on paper we can wrap planet Earth 
9 times!
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We need techniques for ...

 Global program understanding
 Who calls who? What is de module structure?
 Conformance with software architecture?

 Detailed program analysis
 Where are buffer overflows?
 Does lock/unlock occur on every path?

 Program transformation
 Dialect conversion
 API upgrades
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In more detail, we need ...

 Syntax analysis of various  language mixtures
 Extracting facts from source code
 Computing with these facts
 Producing reports, visualisations, …
 Transform source code according to given rules
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Grammar Use Case #3:
Domain-specific Languages
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The Inuit

 The Inuit live in Canada and Greenland
 Their language is called Inuktitut: 
 Inuktitut has many words for the concept snow:

 Fresh snow, Old snow, Frozen snow, Powder snow, 
etc.

 Inuktitut is (from my nerd's       perspective) a 
domain specific language for describing snow

ᐃᓄᒃᑎᑐᑦ
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Domain-specific Languages

 Efficient way to capture domain concepts
 Reduce development time by code generation
 Increase flexibility and infrastructure 

independence
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We need techniques for ...

 Analyzing domain concepts
 Defining the syntax of a DSL
 Defining consistency rules on DSL programs
 Definining code generation from DSL program 

to software infrastructure
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Observations based on Use Cases

● Grammars include definitions for
– Context-free syntax

– Class dictionaries

– XML schema's

– Tree/graph grammars
● Grammars are used for

– concrete/abstract syntax of programming languages

– Exchange formats

– API's
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Observations based on Use Cases

● All grammar-dependent software 
(“grammarware”) evolves over time

● For source code development we use software 
engineering best-practices

● There is no such thing as grammarware 
engineering
– But see: P. Klint, R. Laemmel, C. Verhoef, Towards 

an Engineering Discipline for Grammarware, ACM 
TOSEM, 14(3) 331—380, 2005.
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Grammarware Engineering

Test data
generation

Test dataset
as input

Grammarware Hacking

Semi-automatic
recovery

Grammar

Parser
Specification

Parser
generation

Parser

Semi-automatic
custumization

Parser
Specification

Parser
generation

Parser

...

...

...

Quality measurement
and transformation

Manual
coding

Parser
Specification

Parser
generation

Parser Codebase
as input

Grammar Knowledge

Grammarware
tooling

Trial & Error

Systematic
Incremental

improvement
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Grammarware Research Questions

● How to provide modular grammars?
● What is a “good” grammar?
● How to transform grammars (and maintain the 

link with dependent software)
● How to uncover grammars from grammar-

dependent source code?
● How to test grammar-dependent functionality?
● How does the grammarware “lifecycle” look 

like?
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Parser
specification

Customized
Class hierarchy

Import/export
schema

Semi-structured
document

Customize

Frontend

XML serializer

Visitor framework

Rendered manual

Implement

Test

Recover

Base-line
grammar

Evolve

Evolve
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How can we ...

● Describe syntax & semantics of languages?
● Build tools for grammarware engineering?
● Make these tools programming language 

independent?
● Generic language technology, also called
● Language-parametric technology
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Generic Language Technology 
(GLT)

 Goal: Enable the easy creation of language-
specific tools and programming environments

 Separate language-specific aspects from 
generic aspects

 Approach:
 Find good, reusable, solutions for generic aspects
 Find ways to define language-specific aspects
 Find ways to generate tools from language-specific 

definitions
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Generic aspects

● User-interface
● Text editing, error messages, spell checking

● Program storage
● Version managament
● Documentation & help facilities
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Defining Language Aspects

 Syntax: the form of programs
 Context-free grammar (SDF)

 Static semantics: compile-time properties
 Algebraic specification/rewrite rules (ASF)
 Relational calculus (RScript)

 Dynamic semantics: run-time properties
 Algebraic specification/rewrite rules
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Generate Tools from Definitions

● Context-free syntax
● Parser generator

● Abstract syntax
● API generator

● Static semantics
● Term rewriting compiler
● Relational Calculator

● Dynamics semantics
● Term rewriting compiler
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Role of GLT

Source code,
Programs

Abstractions,
Facts

Documentation,
Pictures

Presentation

FormalizationGeneration

Extraction

Analysis Conversion
Transformation

Generic Language Technology helps implementing translations 
between source code representations 
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Technology used for GLT

Relations,
FactsTrees

Strings,
Files

Parsing

Pretty printing,
Unparsing

Relational
Calculus

Rewriting

Extraction
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How to connect these technologies?
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Technology integration:
Partial Answers

● Program generators
● To be discussed next

● Middleware, like the ToolBus
● not discussed in this presentation

● Integration in a single linguistic framework
● See discussion on Rascal, at end of talk



Paul Klint --- Grammarware is Everywhere and What to Do about That? 45

Technology integration:
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A Program Generator (PG)?

Definition of 
problem P

Generator

Generated program that solves P

Declarative programming

Operational programming
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Examples of Program Generators

● Regular expression matching:
● Problem: recognize regular expressions R

1
,...,R

n
 in a 

text
● Generate: finite automaton

● Web sites
● Problem: create uniform web site for given content
● Generate: HTML code with uniform navigation and 

structure
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Examples of Program Generation

● Compiler
● Input Java program
● Generates: JVM code

● C preprocessor
● Input: C program with #include, #define, ... 

directives
● Generates: C program with directives replaced.
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From Program Generator ...

 Problem description is specific and is usually 
written in a Domain-Specific Language (DSL)

 Generator contains generic algorithms and 
information about application domain.

 A PG isolates a problem description from its 
implementation ⇒  easier to switch to other 
implementation methods.

 Improvements/optimizations in the generator 
are good for all generated programs.
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... to Programming Environment 
Generator (PEG)

● A PEG is a program generator applied in the 
domain of programming environments

● Input: description of desired language L
● Output: (parts of) dedicated L-environment
● Advantages:

● Uniform UI across different languages
● PEG contains generic, re-usable, implementation 

knowledge
● Disadvantages: some specializations not easy
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Programming Environment 
Generator

Formal definition
of language L

Generator

Dedicated environment 
for editing, manipulating and executing 

L programs
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PEG = collection of program 
generators

Definition of
 L static semantics

Definition of
 L syntax

Definition of
 L dynamic 
semantics

Parser 
Generator

L-parser

Typechecker
Generator

L-typechecker

Evaluator 
Generator

L-evaluator

Integrated L-programming environment
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From Definitions to Components

Text

Text

Error
Messages

Edit
Commands

Values

Parser

Syntax
Tree

Manager

Pretty 
Printer

Editor

Type 
checker

Evaluator

Syntax Definition

Dynamic Semantics

Static Semantics
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PEG: other definable aspects

 Lexical syntax
 Concrete syntax
 Abstract syntax
 Pretty printing
 Editor behaviour
 Dataflow
 Control flow

 Program Analysis
 Program Queries
 Evaluation rules
 Compilation rules
 User Interface
 Help rules
 ...
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 A PEG example:
ASF+SDF Meta-Environment

 An interactive development environment for 
generating tools from formal language 
definitions

 Based on:
 Full context-free grammars

• Needed to obtain modular grammar composition
 Conditional term rewriting
 Relational calculus
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Provides various DSLs

Languages definitions are based on various 
DSLs:

 Syntax Definition Formalism (SDF)
 Algebraic Specification Formalism (ASF)
 Relational Scripts (RScript)
 Formatting (Pandora)

The implementation uses:
 ToolBus Scripts (TScript) for coordination of tools
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Interactive
Development
Environment

for Language
definitions

ASF+SDF Meta-Environment

Stand-alone, 
generated, 
environment

Formal definition
of language L

Generator

Generated L 
programming environment 

ASF+SDF Meta-Environment
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Architecture of the
ASF+SDF MetaEnvironment

ToolBus

structure
editor

text
editor

parser
generator parser

graph
browser

ASF+SDF
compiler

ASF+SDF
interpreter

unparser
generator unparser

tree
repository
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ASF+SDF Specifications

 Series of modules that can import each other
 Module can be parameterized; renaming
 Each module consists of two parts:

 SDF-part defines lexical and context-free syntax, 
priorities and variables

 ASF-part defines arbitrary functions, e.g. for 
typechecking, fact extraction, analysis, 
evaluation, transformation, ...
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ASF+SDF

● One of the most innovative features of 
ASF+SDF is fully user-definable notation:
● Instead of a fixed function notation, a function is 

described by a syntax rule
● Enables writing rules in concrete syntax and not in 

abstract syntax (see example below)
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ASF+SDF

Surprisingly, these simple techniques scale to 
large applications. The pattern is always:
 define a syntax (Booleans, numbers, 

programs in C, Java, Cobol)
 define functions on terms in this syntax (and, 

plus, addEndIf)
 apply to examples of interest
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 Cobol 75 has two forms of conditional:

 “IF” Expr “THEN” Stats “END-IF”?

 “IF” Expr “THEN” stats “ELSE” Stats “END-IF”?
 Dangling else problem:

IF expr THEN 

    IF expr THEN 

       stats 

    EL 

       stats

Example: Cobol transformation

IF expr THEN 
    IF expr THEN 
       stats 
    ELSE 
       stats

IF expr THEN 
    IF expr THEN 
       stats 
ELSE 
   stats
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Example: Cobol transformation
module End-If-Trafo
imports Cobol
exports
context-free syntax
  addEndIf(Program)-> Program {traversal(trafo,continue,top-down)}
variables
 "Stats"[0-9]*       -> StatsOptIfNotClosed
 "Expr"[0-9]*         -> L-exp
 "OptThen"[0-9]*   -> OptThen
equations
[1] addEndIf(IF Expr OptThen Stats)  =
             IF Expr OptThen Stats END-IF

[2] addEndIf(IF Expr OptThen Stats1 ELSE Stats2) =
             IF Expr OptThen Stats1 ELSE Stats2 END-IF

Add missing END-IF keywords

Equations for the two cases

Impossible to do with regular 
expression tools like grep since
conditionals can be nested
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ReCap

 ASF+SDF takes care of
 Syntax definition
 Transformation
 Fact extraction

 How about software analysis?
– Can be done with rewrite rules

– Relational Calculus adds flexibility & conciseness

“Everything is
a Language”

Code Generation
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Recall: Extract-Enrich-View 
Paradigm

Source code Documentation ...

Extract

Facts

View

Web pages Graphics ...

Enrich

ASF+SDF

RScript
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Analyzing the call structure of an 
application

a

b

f

c d e g

rel[str, str] calls = {<"a", "b">, <"b", "c">, <"b", "d">, <"d", "c">, 
       <"d","e">, <"f", "e">, <"f", "g">, <"g", "e">}
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Some questions

 What are the entry points?

 set[str] entryPoints = top(calls)

 {“a”, “f”}
 What are the leaves?

 set[str] bottomCalls = bottom(calls)

 {“c”, “e”}

a

b

f

c d e g

The roots of a relation
(viewed as a graph)

The leaves of a relation
(viewed as a graph)
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Some questions
 What are the indirect calls between 

procedures?

 rel[str,str] closureCalls = calls+

 {<"a", "b">, <"b", "c">, <"b", "d">, <"d", "c">, 
<"d","e">, <"f", "e">, <"f", "g">, <"g", "e">, <"a", 
"c">, <"a", "d">, <"b", "e">, <"a", "e">}

 What are the calls from entry point a?

 set[str] calledFromA = closureCalls["a"]

 {"b", "c", "d", "e"}

a

b

f

c d e g
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Some questions

 What are the calls from entry point f?

 set[str] calledFromF = closureCalls["f"]

 {"e", "g"}
 What are the common procedures?

 set[str] commonProcs =                        
calledFromA inter calledFromF

 {"e"}

a

b

f

c d e g
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Script -> Run
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Unfolding the rstore ...
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Unfolding closureCalls
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closureCalls as Text
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closureCalls as Table
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closureCalls as Graph
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Component Structure of 
Application

 Suppose, we know:
 the call relation between procedures (Calls)

 the component of each procedure (PartOf)

 Question:
 Can we lift the relation between procedures to a 

relation between components (ComponentCalls)?

 This is usefull for checking that real code 
conforms to architectural constraints
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Calls

a b

main

c d

type proc = str
type comp = str
rel[proc,proc] Calls = {<"main", "a">, <"main", "b">, <"a", "b">,  
                                   <"a", "c">, <"a", "d">, <"b", "d">}
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PartOf

a b

main

c d

a b

main

c d

Appl DB

Lib

set[comp] Components = {"Appl", "DB", "Lib"}
rel[proc, comp] PartOf = 
    {<"main", "Appl">, <"a", "Appl">, <"b", "DB">,
                                                    <"c", "Lib">, <"d", "Lib">}
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lift

a b

main

c d

a b

main

c d

Appl
DB

Lib

Appl DB

Lib

rel[comp,comp] lift(rel[proc,proc] aCalls,  rel[proc,comp] aPartOf) =
   { <C1, C2> | <proc P1, proc P2> : aCalls, 
                    <comp C1, comp C2> : aPartOf[P1] x aPartOf[P2] }
rel[comp,comp] ComponentCalls = lift(Calls2, PartOf)

Result: {<"DB", "Lib">, <"Appl", "Lib">, <"Appl", "DB">, <"Appl", "Appl">}
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The good news

● ASF+SDF in use for many analysis & 
transformation projects

● User-definable syntax + conditional rewrite rules 
+ relational calculus is a good feature set for 
this domain

● Performance is ok (regular winner of rewrite 
competions)
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The bad News

● Missing features
● Fact extraction turns out to be the bottleneck
● => DeFacto: annotated grammars

● Mixture of formalisms increases learning curve
● Underlying mechanisms not easy to understand 

for the average programmer
● We are still struggling with grammarware issues

● How to develop, test, improve grammars?
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Technology integration:
Partial Answers

● Program generators
● Middleware, like the ToolBus

● not discussed in this presentation
● Integration in a single linguistic framework

● Discussion on Rascal
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Rascal: new scripting language for 
analysis and transformation

● Small learning curve for Java programmers
● Build on top of Java, easy access to the whole 

Java infrastructure
● Integration with Eclipse
● Suited for analysis, refactoring & transformation
● First target: simplifying refactorings in Eclipse
● Second target: a grammarware laboratory
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Features

● Full context-free parsing (re-uses SDF)
● Matching (regular, abstract, concrete)
● Rich datatypes (based on Rscript)
● Conditional rewrite rules and functions
● Control structures geared to support matching, 

tree traversal and local backtracking
● Comprehensions (list, set, map)
● Generators in comprehensions can range over 

abstract and parse tree datatypes
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Rascal datatypes

● Atomic: bool, int, real, str, loc (source code 
location)

● Structured: list, set, map, rel (n-ary relation), 
abstract data type, parse tree

● Typesystem:
● Types can be parameterized (polymorphism)
● All function signatures are explicitly typed
● Inside function bodies types can be inferred 

(“comfort typing”)
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Manipulating ADTs

data NODE =  int N
                   |  f(NODE I, NODE J)
                   |  g(NODE I, NODE J) 
                   |  h(NODE I, NODE J)
                   ;

g

f

1 2

g

3 4
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Increment all integer nodes

public node inc(NODE T) {
    return visit(T) {
      case int N => N + 1;
    };
}

g

f

1 2

g

3 4

g

f

2 3

g

4 5

inc(                                )        =>

Visit traverses the
 complete tree and returns

modified tree

Matching by cases and 
local subtree replacement
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Note

● This code is insensitive to the number of 
constructors
● Here: 4
● In Java or Cobol: hundreds

● Lexical/abstract/concrete matching
● List/set matching
● Visits can be parameterized with a strategy
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Full/shallow/deep replacement

public NODE srepl(NODE T) {
    return top-down-break visit (T) {
       case g(NODE T1, NODE T2) =>  h(T1, T2)
    };
}

public NODE frepl(NODE T) {
    return visit (T) {
       case g(NODE T1, NODE T2) =>  h(T1, T2)
    };
}

public NODE drepl(NODE T) {
    return bottom-up-break visit (T) {
       case g(NODE T1, NODE T2) =>  h(T1, T2)
    };
}

h

f

1 2

h

3 4

h

f

1 2

g

3 4

g

f

1 2

h

3 4
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Counting words in a string

public int countLine(str S){
  int count = 0;
  for(/[a-zA-Z0-9]+/: S){
       count += 1;
  }
  return count;
}

"'Twas brillig, and the slithy toves"countLine(                                                                   ) => 6
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Finding date-related variables

module DateVars
import Cobol;

set[Var] getDateVars(CobolProgram P){

   return {V | Var V : P, 

                    /^.*(date|dt|year|yr).*$/i := toString(V)
              };
}

Traverse P and
 return all occurrences

of variables

Variable name
matches a date-related

heuristicPut variables that
match in result

Import the COBOL grammar
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Computing Dominators

public rel[&T, set[&T]] dominators(
   rel[&T,&T] PRED, // control flow graph
   &T ROOT // entry point
)
{
   set[&T] VERTICES = carrier(PRED);

   return  { <V,  (VERTICES - {V, ROOT})
                       - reachX({ROOT}, {V}, PRED)> |  &T V : VERTICES};
}

● A node M dominates other nodes S in the flow 
graph iff all path from the root to a node in S 
contain M
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Rascal Status

● An interpreter for the core language (currently 
except parsing and concrete pattern matching) 
is well underway.

● All the above examples (and many more!) run.
● Full language expected to be implemented mid 

2009.
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Summary

 Generic Language Technology helps to build 
tools for language processing quickly

 Programming Environment Generators are an 
application of GLT

 ASF+SDF Meta-Environment is an Interactive 
Development Environment for language 
definitions and a Programming Environment 
Generator

 Rascal: integrated language for analysis & 
transformation
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Software renovation Domain-specific Languages

Generic Language Technology/ASF+SDF
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Where are we relative to the 
grammarware challenges?
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Baron Von Münchhausen
pulling himself out of the 
swamp by his hair
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M.C. Escher,
Hands drawing
 themselves
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Related research

● New parsing algorithms
● Efficient parsing of general CFGs

● Heuristics ambiguity checkers
● Undecidable, but important for grammar composition

● API refactoring efforts
● Essential for software evolution

● Grammar metrics
● How good is a grammar

● Grammar testing
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Current Research in our Group

 DeFacto: easy fact extraction by annotating 
grammars

 Rascal implementation/integration in Eclipse
 Use cases:

– Refactoring in Eclipse

– Grammarware: towards a GrammarLab
• Grammar refactoring
• Grammar metrics
• Ambiguity detection
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Grammarware Research Questions

● How to provide modular grammars?
● What is a “good” grammar?
● How to transform grammars (and maintain the 

link with dependent software)
● How to uncover grammars from grammar-

dependent source code?
● How to test grammar-dependent functionality?
● How does the grammarware “lifecycle” look like 

and how can we support it?
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Further Reading/Questions

Technology: www.meta-environment.org
Home page: www.cwi.nl/~paulk
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