
Grammarware is Everywhere
and What to Do about That?

Paul Klint

Paul Klint --- Grammarware is Everywhere and What to Do about That? 2

Grammars and Languages are one
of the most established areas of

Computer Science

Paul Klint --- Grammarware is Everywhere and What to Do about That? 3

N. Chomsky,
Aspects of the theory of syntax,
1965

Paul Klint --- Grammarware is Everywhere and What to Do about That? 4

A.V. Aho & J.D. Ullman,
The Theory of Parsing,
Translation and Compilimg,
Parts I + II,
1972

Paul Klint --- Grammarware is Everywhere and What to Do about That? 5

A.V. Aho, R. Sethi,
J.D. Ullman,
Compiler, Principles,
Techniques and Tools,
1986

Paul Klint --- Grammarware is Everywhere and What to Do about That? 6

D. Grune, C. Jacobs,
Parsing Techniques,
A Practical Guide,
2008

Paul Klint --- Grammarware is Everywhere and What to Do about That? 7

Is Research on Grammars and
Parsing Dead?

Why?

Why Not?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 8

Why?

● The most obvious and visible results have been
achieved:
● Grammar classes
● Parsing algorithms
● Complexity
● Decidability

● The use of parsing in compilers is standard
● Parsing is just one (relatively simple) aspect of

compiling

Paul Klint --- Grammarware is Everywhere and What to Do about That? 9

Why Not?

The Use Cases are changing:
– From batch use to interactive use

– From single language to multiple language

– From compiling to understanding and renovation

– From standard language to domain-specific
language

– From textual grammar to graphical model

– ...

Paul Klint --- Grammarware is Everywhere and What to Do about That? 10

Grammar Use Case #1:
Compilation versus Understanding

Paul Klint --- Grammarware is Everywhere and What to Do about That? 11

Compilation is ...

● A well-defined process with well-defined
input, output and constraints

● Input: source program in a fixed language
with well-defined syntax and semantics

● Output: a fixed target language with well-
defined syntax and semantics

● Constraints are known (correctness,
performance)

● A batch-like process

Paul Klint --- Grammarware is Everywhere and What to Do about That? 12

Compilation is ...

Source

Target

Single,
well defined,

 source

Single,
well

defined,
 target

A batch-like process with
clear constraints

Paul Klint --- Grammarware is Everywhere and What to Do about That? 13

Understanding is ...

● An exploration process with as input
– system artifacts (source, documentation,

tests, ...)

– implicit knowledge of its designers or maintainers
● There is no clear target language
● An interactive process:

– Extract elementary facts

– Abstract to get derived facts needed for analysis

– View derived facts through visualization/browsing

Paul Klint --- Grammarware is Everywhere and What to Do about That? 14

Extract-Enrich-View Paradigm

Source code Documentation ...
Extract

Facts

View

Web pages Graphics ...

Enrich

Paul Klint --- Grammarware is Everywhere and What to Do about That? 15

Examples of understanding
problems

● Which programs call each others?
● Which programs use which databases?
● If we change this database record, which

programs are affected?
● Which programs are more complex than

others?
● How much code clones exist in the code?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 16

Grammar Use Case #1: Summary

There is a mismatch between
– standard compilation techniques and

– the needs for understanding and restructuring

Paul Klint --- Grammarware is Everywhere and What to Do about That? 17

Grammar Use Case #2:
Software Renovation

Paul Klint --- Grammarware is Everywhere and What to Do about That? 18

Some cars need maintenance ...

Paul Klint --- Grammarware is Everywhere and What to Do about That? 19

… to replace proven technology ...

1931 Patrol
Car

Paul Klint --- Grammarware is Everywhere and What to Do about That? 20

... or proven-technology-inside ...

Cherrelyn Horse Car, Denver Colorado

Paul Klint --- Grammarware is Everywhere and What to Do about That? 21

 The total volume of software is estimated at
 7 * 109 function points

 1 FP = 128 lines of C or 107 lines of COBOL
 The volume of this volcano is

 750 Giga-lines of COBOL code, or
 900 Giga-lines of C code

Legacy Software

Printed on paper we can wrap planet Earth
9 times!

Paul Klint --- Grammarware is Everywhere and What to Do about That? 22

We need techniques for ...

 Global program understanding
 Who calls who? What is de module structure?
 Conformance with software architecture?

 Detailed program analysis
 Where are buffer overflows?
 Does lock/unlock occur on every path?

 Program transformation
 Dialect conversion
 API upgrades

Paul Klint --- Grammarware is Everywhere and What to Do about That? 23

In more detail, we need ...

 Syntax analysis of various language mixtures
 Extracting facts from source code
 Computing with these facts
 Producing reports, visualisations, …
 Transform source code according to given rules

Paul Klint --- Grammarware is Everywhere and What to Do about That? 24

Grammar Use Case #3:
Domain-specific Languages

Paul Klint --- Grammarware is Everywhere and What to Do about That? 25

Paul Klint --- Grammarware is Everywhere and What to Do about That? 26

Paul Klint --- Grammarware is Everywhere and What to Do about That? 27

Paul Klint --- Grammarware is Everywhere and What to Do about That? 28

The Inuit

 The Inuit live in Canada and Greenland
 Their language is called Inuktitut:
 Inuktitut has many words for the concept snow:

 Fresh snow, Old snow, Frozen snow, Powder snow,
etc.

 Inuktitut is (from my nerd's perspective) a
domain specific language for describing snow

ᐃᓄᒃᑎᑐᑦ

Paul Klint --- Grammarware is Everywhere and What to Do about That? 29

Domain-specific Languages

 Efficient way to capture domain concepts
 Reduce development time by code generation
 Increase flexibility and infrastructure

independence

Paul Klint --- Grammarware is Everywhere and What to Do about That? 30

We need techniques for ...

 Analyzing domain concepts
 Defining the syntax of a DSL
 Defining consistency rules on DSL programs
 Definining code generation from DSL program

to software infrastructure

Paul Klint --- Grammarware is Everywhere and What to Do about That? 31

Observations based on Use Cases

● Grammars include definitions for
– Context-free syntax

– Class dictionaries

– XML schema's

– Tree/graph grammars
● Grammars are used for

– concrete/abstract syntax of programming languages

– Exchange formats

– API's

Paul Klint --- Grammarware is Everywhere and What to Do about That? 32

Observations based on Use Cases

● All grammar-dependent software
(“grammarware”) evolves over time

● For source code development we use software
engineering best-practices

● There is no such thing as grammarware
engineering
– But see: P. Klint, R. Laemmel, C. Verhoef, Towards

an Engineering Discipline for Grammarware, ACM
TOSEM, 14(3) 331—380, 2005.

Paul Klint --- Grammarware is Everywhere and What to Do about That? 33

Grammarware Engineering

Test data
generation

Test dataset
as input

Grammarware Hacking

Semi-automatic
recovery

Grammar

Parser
Specification

Parser
generation

Parser

Semi-automatic
custumization

Parser
Specification

Parser
generation

Parser

...

...

...

Quality measurement
and transformation

Manual
coding

Parser
Specification

Parser
generation

Parser Codebase
as input

Grammar Knowledge

Grammarware
tooling

Trial & Error

Systematic
Incremental

improvement

Paul Klint --- Grammarware is Everywhere and What to Do about That? 34

Grammarware Research Questions

● How to provide modular grammars?
● What is a “good” grammar?
● How to transform grammars (and maintain the

link with dependent software)
● How to uncover grammars from grammar-

dependent source code?
● How to test grammar-dependent functionality?
● How does the grammarware “lifecycle” look

like?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 35

Parser
specification

Customized
Class hierarchy

Import/export
schema

Semi-structured
document

Customize

Frontend

XML serializer

Visitor framework

Rendered manual

Implement

Test

Recover

Base-line
grammar

Evolve

Evolve

Paul Klint --- Grammarware is Everywhere and What to Do about That? 36

How can we ...

● Describe syntax & semantics of languages?
● Build tools for grammarware engineering?
● Make these tools programming language

independent?
● Generic language technology, also called
● Language-parametric technology

Paul Klint --- Grammarware is Everywhere and What to Do about That? 37

Generic Language Technology
(GLT)

 Goal: Enable the easy creation of language-
specific tools and programming environments

 Separate language-specific aspects from
generic aspects

 Approach:
 Find good, reusable, solutions for generic aspects
 Find ways to define language-specific aspects
 Find ways to generate tools from language-specific

definitions

Paul Klint --- Grammarware is Everywhere and What to Do about That? 38

Generic aspects

● User-interface
● Text editing, error messages, spell checking

● Program storage
● Version managament
● Documentation & help facilities

Paul Klint --- Grammarware is Everywhere and What to Do about That? 39

Defining Language Aspects

 Syntax: the form of programs
 Context-free grammar (SDF)

 Static semantics: compile-time properties
 Algebraic specification/rewrite rules (ASF)
 Relational calculus (RScript)

 Dynamic semantics: run-time properties
 Algebraic specification/rewrite rules

Paul Klint --- Grammarware is Everywhere and What to Do about That? 40

Generate Tools from Definitions

● Context-free syntax
● Parser generator

● Abstract syntax
● API generator

● Static semantics
● Term rewriting compiler
● Relational Calculator

● Dynamics semantics
● Term rewriting compiler

Paul Klint --- Grammarware is Everywhere and What to Do about That? 41

Role of GLT

Source code,
Programs

Abstractions,
Facts

Documentation,
Pictures

Presentation

FormalizationGeneration

Extraction

Analysis Conversion
Transformation

Generic Language Technology helps implementing translations
between source code representations

Paul Klint --- Grammarware is Everywhere and What to Do about That? 42

Technology used for GLT

Relations,
FactsTrees

Strings,
Files

Parsing

Pretty printing,
Unparsing

Relational
Calculus

Rewriting

Extraction

Paul Klint --- Grammarware is Everywhere and What to Do about That? 43

How to connect these technologies?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 44

Technology integration:
Partial Answers

● Program generators
● To be discussed next

● Middleware, like the ToolBus
● not discussed in this presentation

● Integration in a single linguistic framework
● See discussion on Rascal, at end of talk

Paul Klint --- Grammarware is Everywhere and What to Do about That? 45

Technology integration:
Partial Answers

● Program generators
● To be discussed next

● Middleware, like the ToolBus
● not discussed in this presentation

● Integration in a single linguistic framework
● See discussion on Rascal, at end of talk

Paul Klint --- Grammarware is Everywhere and What to Do about That? 46

A Program Generator (PG)?

Definition of
problem P

Generator

Generated program that solves P

Declarative programming

Operational programming

Paul Klint --- Grammarware is Everywhere and What to Do about That? 47

Examples of Program Generators

● Regular expression matching:
● Problem: recognize regular expressions R

1
,...,R

n
 in a

text
● Generate: finite automaton

● Web sites
● Problem: create uniform web site for given content
● Generate: HTML code with uniform navigation and

structure

Paul Klint --- Grammarware is Everywhere and What to Do about That? 48

Examples of Program Generation

● Compiler
● Input Java program
● Generates: JVM code

● C preprocessor
● Input: C program with #include, #define, ...

directives
● Generates: C program with directives replaced.

Paul Klint --- Grammarware is Everywhere and What to Do about That? 49

From Program Generator ...

 Problem description is specific and is usually
written in a Domain-Specific Language (DSL)

 Generator contains generic algorithms and
information about application domain.

 A PG isolates a problem description from its
implementation ⇒ easier to switch to other
implementation methods.

 Improvements/optimizations in the generator
are good for all generated programs.

Paul Klint --- Grammarware is Everywhere and What to Do about That? 50

... to Programming Environment
Generator (PEG)

● A PEG is a program generator applied in the
domain of programming environments

● Input: description of desired language L
● Output: (parts of) dedicated L-environment
● Advantages:

● Uniform UI across different languages
● PEG contains generic, re-usable, implementation

knowledge
● Disadvantages: some specializations not easy

Paul Klint --- Grammarware is Everywhere and What to Do about That? 51

Programming Environment
Generator

Formal definition
of language L

Generator

Dedicated environment
for editing, manipulating and executing

L programs

Paul Klint --- Grammarware is Everywhere and What to Do about That? 52

PEG = collection of program
generators

Definition of
 L static semantics

Definition of
 L syntax

Definition of
 L dynamic
semantics

Parser
Generator

L-parser

Typechecker
Generator

L-typechecker

Evaluator
Generator

L-evaluator

Integrated L-programming environment

Paul Klint --- Grammarware is Everywhere and What to Do about That? 53

From Definitions to Components

Text

Text

Error
Messages

Edit
Commands

Values

Parser

Syntax
Tree

Manager

Pretty
Printer

Editor

Type
checker

Evaluator

Syntax Definition

Dynamic Semantics

Static Semantics

Paul Klint --- Grammarware is Everywhere and What to Do about That? 54

PEG: other definable aspects

 Lexical syntax
 Concrete syntax
 Abstract syntax
 Pretty printing
 Editor behaviour
 Dataflow
 Control flow

 Program Analysis
 Program Queries
 Evaluation rules
 Compilation rules
 User Interface
 Help rules
 ...

Paul Klint --- Grammarware is Everywhere and What to Do about That? 55

 A PEG example:
ASF+SDF Meta-Environment

 An interactive development environment for
generating tools from formal language
definitions

 Based on:
 Full context-free grammars

• Needed to obtain modular grammar composition
 Conditional term rewriting
 Relational calculus

Paul Klint --- Grammarware is Everywhere and What to Do about That? 56

Provides various DSLs

Languages definitions are based on various
DSLs:

 Syntax Definition Formalism (SDF)
 Algebraic Specification Formalism (ASF)
 Relational Scripts (RScript)
 Formatting (Pandora)

The implementation uses:
 ToolBus Scripts (TScript) for coordination of tools

Paul Klint --- Grammarware is Everywhere and What to Do about That? 57

Interactive
Development
Environment

for Language
definitions

ASF+SDF Meta-Environment

Stand-alone,
generated,
environment

Formal definition
of language L

Generator

Generated L
programming environment

ASF+SDF Meta-Environment

Paul Klint --- Grammarware is Everywhere and What to Do about That? 58

Architecture of the
ASF+SDF MetaEnvironment

ToolBus

structure
editor

text
editor

parser
generator parser

graph
browser

ASF+SDF
compiler

ASF+SDF
interpreter

unparser
generator unparser

tree
repository

Paul Klint --- Grammarware is Everywhere and What to Do about That? 59

ASF+SDF Specifications

 Series of modules that can import each other
 Module can be parameterized; renaming
 Each module consists of two parts:

 SDF-part defines lexical and context-free syntax,
priorities and variables

 ASF-part defines arbitrary functions, e.g. for
typechecking, fact extraction, analysis,
evaluation, transformation, ...

Paul Klint --- Grammarware is Everywhere and What to Do about That? 60

ASF+SDF

● One of the most innovative features of
ASF+SDF is fully user-definable notation:
● Instead of a fixed function notation, a function is

described by a syntax rule
● Enables writing rules in concrete syntax and not in

abstract syntax (see example below)

Paul Klint --- Grammarware is Everywhere and What to Do about That? 61

ASF+SDF

Surprisingly, these simple techniques scale to
large applications. The pattern is always:
 define a syntax (Booleans, numbers,

programs in C, Java, Cobol)
 define functions on terms in this syntax (and,

plus, addEndIf)
 apply to examples of interest

Paul Klint --- Grammarware is Everywhere and What to Do about That? 62

 Cobol 75 has two forms of conditional:

 “IF” Expr “THEN” Stats “END-IF”?

 “IF” Expr “THEN” stats “ELSE” Stats “END-IF”?
 Dangling else problem:

IF expr THEN

 IF expr THEN

 stats

 EL

 stats

Example: Cobol transformation

IF expr THEN
 IF expr THEN
 stats
 ELSE
 stats

IF expr THEN
 IF expr THEN
 stats
ELSE
 stats

Paul Klint --- Grammarware is Everywhere and What to Do about That? 63

Example: Cobol transformation
module End-If-Trafo
imports Cobol
exports
context-free syntax
 addEndIf(Program)-> Program {traversal(trafo,continue,top-down)}
variables
 "Stats"[0-9]* -> StatsOptIfNotClosed
 "Expr"[0-9]* -> L-exp
 "OptThen"[0-9]* -> OptThen
equations
[1] addEndIf(IF Expr OptThen Stats) =
 IF Expr OptThen Stats END-IF

[2] addEndIf(IF Expr OptThen Stats1 ELSE Stats2) =
 IF Expr OptThen Stats1 ELSE Stats2 END-IF

Add missing END-IF keywords

Equations for the two cases

Impossible to do with regular
expression tools like grep since
conditionals can be nested

Paul Klint --- Grammarware is Everywhere and What to Do about That? 64

ReCap

 ASF+SDF takes care of
 Syntax definition
 Transformation
 Fact extraction

 How about software analysis?
– Can be done with rewrite rules

– Relational Calculus adds flexibility & conciseness

“Everything is
a Language”

Code Generation

Paul Klint --- Grammarware is Everywhere and What to Do about That? 65

Recall: Extract-Enrich-View
Paradigm

Source code Documentation ...

Extract

Facts

View

Web pages Graphics ...

Enrich

ASF+SDF

RScript

Paul Klint --- Grammarware is Everywhere and What to Do about That? 66

Analyzing the call structure of an
application

a

b

f

c d e g

rel[str, str] calls = {<"a", "b">, <"b", "c">, <"b", "d">, <"d", "c">,
 <"d","e">, <"f", "e">, <"f", "g">, <"g", "e">}

Paul Klint --- Grammarware is Everywhere and What to Do about That? 67

Some questions

 What are the entry points?

 set[str] entryPoints = top(calls)

 {“a”, “f”}
 What are the leaves?

 set[str] bottomCalls = bottom(calls)

 {“c”, “e”}

a

b

f

c d e g

The roots of a relation
(viewed as a graph)

The leaves of a relation
(viewed as a graph)

Paul Klint --- Grammarware is Everywhere and What to Do about That? 68

Some questions
 What are the indirect calls between

procedures?

 rel[str,str] closureCalls = calls+

 {<"a", "b">, <"b", "c">, <"b", "d">, <"d", "c">,
<"d","e">, <"f", "e">, <"f", "g">, <"g", "e">, <"a",
"c">, <"a", "d">, <"b", "e">, <"a", "e">}

 What are the calls from entry point a?

 set[str] calledFromA = closureCalls["a"]

 {"b", "c", "d", "e"}

a

b

f

c d e g

Paul Klint --- Grammarware is Everywhere and What to Do about That? 69

Some questions

 What are the calls from entry point f?

 set[str] calledFromF = closureCalls["f"]

 {"e", "g"}
 What are the common procedures?

 set[str] commonProcs =
calledFromA inter calledFromF

 {"e"}

a

b

f

c d e g

Paul Klint --- Grammarware is Everywhere and What to Do about That? 70

Script -> Run

Paul Klint --- Grammarware is Everywhere and What to Do about That? 71

Unfolding the rstore ...

Paul Klint --- Grammarware is Everywhere and What to Do about That? 72

Unfolding closureCalls

Paul Klint --- Grammarware is Everywhere and What to Do about That? 73

closureCalls as Text

Paul Klint --- Grammarware is Everywhere and What to Do about That? 74

closureCalls as Table

Paul Klint --- Grammarware is Everywhere and What to Do about That? 75

closureCalls as Graph

Paul Klint --- Grammarware is Everywhere and What to Do about That? 76

Component Structure of
Application

 Suppose, we know:
 the call relation between procedures (Calls)

 the component of each procedure (PartOf)

 Question:
 Can we lift the relation between procedures to a

relation between components (ComponentCalls)?

 This is usefull for checking that real code
conforms to architectural constraints

Paul Klint --- Grammarware is Everywhere and What to Do about That? 77

Calls

a b

main

c d

type proc = str
type comp = str
rel[proc,proc] Calls = {<"main", "a">, <"main", "b">, <"a", "b">,
 <"a", "c">, <"a", "d">, <"b", "d">}

Paul Klint --- Grammarware is Everywhere and What to Do about That? 78

PartOf

a b

main

c d

a b

main

c d

Appl DB

Lib

set[comp] Components = {"Appl", "DB", "Lib"}
rel[proc, comp] PartOf =
 {<"main", "Appl">, <"a", "Appl">, <"b", "DB">,
 <"c", "Lib">, <"d", "Lib">}

Paul Klint --- Grammarware is Everywhere and What to Do about That? 79

lift

a b

main

c d

a b

main

c d

Appl
DB

Lib

Appl DB

Lib

rel[comp,comp] lift(rel[proc,proc] aCalls, rel[proc,comp] aPartOf) =
 { <C1, C2> | <proc P1, proc P2> : aCalls,
 <comp C1, comp C2> : aPartOf[P1] x aPartOf[P2] }
rel[comp,comp] ComponentCalls = lift(Calls2, PartOf)

Result: {<"DB", "Lib">, <"Appl", "Lib">, <"Appl", "DB">, <"Appl", "Appl">}

Paul Klint --- Grammarware is Everywhere and What to Do about That? 80

The good news

● ASF+SDF in use for many analysis &
transformation projects

● User-definable syntax + conditional rewrite rules
+ relational calculus is a good feature set for
this domain

● Performance is ok (regular winner of rewrite
competions)

Paul Klint --- Grammarware is Everywhere and What to Do about That? 81

The bad News

● Missing features
● Fact extraction turns out to be the bottleneck
● => DeFacto: annotated grammars

● Mixture of formalisms increases learning curve
● Underlying mechanisms not easy to understand

for the average programmer
● We are still struggling with grammarware issues

● How to develop, test, improve grammars?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 82

Technology integration:
Partial Answers

● Program generators
● Middleware, like the ToolBus

● not discussed in this presentation
● Integration in a single linguistic framework

● Discussion on Rascal

Paul Klint --- Grammarware is Everywhere and What to Do about That? 83

Technology integration:
Partial Answers

● Program generators
● Middleware, like the ToolBus

● not discussed in this presentation
● Integration in a single linguistic framework

● Discussion on Rascal

Paul Klint --- Grammarware is Everywhere and What to Do about That? 84

Technology integration:
Partial Answers

● Program generators
● Middleware, like the ToolBus

● not discussed in this presentation
● Integration in a single linguistic framework

● Discussion on Rascal

Paul Klint --- Grammarware is Everywhere and What to Do about That? 85

Rascal: new scripting language for
analysis and transformation

● Small learning curve for Java programmers
● Build on top of Java, easy access to the whole

Java infrastructure
● Integration with Eclipse
● Suited for analysis, refactoring & transformation
● First target: simplifying refactorings in Eclipse
● Second target: a grammarware laboratory

Paul Klint --- Grammarware is Everywhere and What to Do about That? 86

Features

● Full context-free parsing (re-uses SDF)
● Matching (regular, abstract, concrete)
● Rich datatypes (based on Rscript)
● Conditional rewrite rules and functions
● Control structures geared to support matching,

tree traversal and local backtracking
● Comprehensions (list, set, map)
● Generators in comprehensions can range over

abstract and parse tree datatypes

Paul Klint --- Grammarware is Everywhere and What to Do about That? 87

Rascal datatypes

● Atomic: bool, int, real, str, loc (source code
location)

● Structured: list, set, map, rel (n-ary relation),
abstract data type, parse tree

● Typesystem:
● Types can be parameterized (polymorphism)
● All function signatures are explicitly typed
● Inside function bodies types can be inferred

(“comfort typing”)

Paul Klint --- Grammarware is Everywhere and What to Do about That? 88

Manipulating ADTs

data NODE = int N
 | f(NODE I, NODE J)
 | g(NODE I, NODE J)
 | h(NODE I, NODE J)
 ;

g

f

1 2

g

3 4

Paul Klint --- Grammarware is Everywhere and What to Do about That? 89

Increment all integer nodes

public node inc(NODE T) {
 return visit(T) {
 case int N => N + 1;
 };
}

g

f

1 2

g

3 4

g

f

2 3

g

4 5

inc() =>

Visit traverses the
 complete tree and returns

modified tree

Matching by cases and
local subtree replacement

Paul Klint --- Grammarware is Everywhere and What to Do about That? 90

Note

● This code is insensitive to the number of
constructors
● Here: 4
● In Java or Cobol: hundreds

● Lexical/abstract/concrete matching
● List/set matching
● Visits can be parameterized with a strategy

Paul Klint --- Grammarware is Everywhere and What to Do about That? 91

Full/shallow/deep replacement

public NODE srepl(NODE T) {
 return top-down-break visit (T) {
 case g(NODE T1, NODE T2) => h(T1, T2)
 };
}

public NODE frepl(NODE T) {
 return visit (T) {
 case g(NODE T1, NODE T2) => h(T1, T2)
 };
}

public NODE drepl(NODE T) {
 return bottom-up-break visit (T) {
 case g(NODE T1, NODE T2) => h(T1, T2)
 };
}

h

f

1 2

h

3 4

h

f

1 2

g

3 4

g

f

1 2

h

3 4

Paul Klint --- Grammarware is Everywhere and What to Do about That? 92

Counting words in a string

public int countLine(str S){
 int count = 0;
 for(/[a-zA-Z0-9]+/: S){
 count += 1;
 }
 return count;
}

"'Twas brillig, and the slithy toves"countLine() => 6

Paul Klint --- Grammarware is Everywhere and What to Do about That? 93

Finding date-related variables

module DateVars
import Cobol;

set[Var] getDateVars(CobolProgram P){

 return {V | Var V : P,

 /^.*(date|dt|year|yr).*$/i := toString(V)
 };
}

Traverse P and
 return all occurrences

of variables

Variable name
matches a date-related

heuristicPut variables that
match in result

Import the COBOL grammar

Paul Klint --- Grammarware is Everywhere and What to Do about That? 94

Computing Dominators

public rel[&T, set[&T]] dominators(
 rel[&T,&T] PRED, // control flow graph
 &T ROOT // entry point
)
{
 set[&T] VERTICES = carrier(PRED);

 return { <V, (VERTICES - {V, ROOT})
 - reachX({ROOT}, {V}, PRED)> | &T V : VERTICES};
}

● A node M dominates other nodes S in the flow
graph iff all path from the root to a node in S
contain M

Paul Klint --- Grammarware is Everywhere and What to Do about That? 95

Rascal Status

● An interpreter for the core language (currently
except parsing and concrete pattern matching)
is well underway.

● All the above examples (and many more!) run.
● Full language expected to be implemented mid

2009.

Paul Klint --- Grammarware is Everywhere and What to Do about That? 96

Summary

 Generic Language Technology helps to build
tools for language processing quickly

 Programming Environment Generators are an
application of GLT

 ASF+SDF Meta-Environment is an Interactive
Development Environment for language
definitions and a Programming Environment
Generator

 Rascal: integrated language for analysis &
transformation

Paul Klint --- Grammarware is Everywhere and What to Do about That? 97

Software renovation Domain-specific Languages

Generic Language Technology/ASF+SDF

Paul Klint --- Grammarware is Everywhere and What to Do about That? 98

Where are we relative to the
grammarware challenges?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 99

Baron Von Münchhausen
pulling himself out of the
swamp by his hair

Paul Klint --- Grammarware is Everywhere and What to Do about That? 100

M.C. Escher,
Hands drawing
 themselves

Paul Klint --- Grammarware is Everywhere and What to Do about That? 101

Related research

● New parsing algorithms
● Efficient parsing of general CFGs

● Heuristics ambiguity checkers
● Undecidable, but important for grammar composition

● API refactoring efforts
● Essential for software evolution

● Grammar metrics
● How good is a grammar

● Grammar testing

Paul Klint --- Grammarware is Everywhere and What to Do about That? 102

Current Research in our Group

 DeFacto: easy fact extraction by annotating
grammars

 Rascal implementation/integration in Eclipse
 Use cases:

– Refactoring in Eclipse

– Grammarware: towards a GrammarLab
• Grammar refactoring
• Grammar metrics
• Ambiguity detection

Paul Klint --- Grammarware is Everywhere and What to Do about That? 103

Grammarware Research Questions

● How to provide modular grammars?
● What is a “good” grammar?
● How to transform grammars (and maintain the

link with dependent software)
● How to uncover grammars from grammar-

dependent source code?
● How to test grammar-dependent functionality?
● How does the grammarware “lifecycle” look like

and how can we support it?

Paul Klint --- Grammarware is Everywhere and What to Do about That? 104

Further Reading/Questions

Technology: www.meta-environment.org
Home page: www.cwi.nl/~paulk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

