
Towards reversible languages and systems

Jean-Bernard Stefani

joint work with I. Lanese, M. Lienhardt, C.A. Mezzina and A. Schmitt

INRIA, France

Stefani (INRIA) Towards reversible languages and systems June 2012 1 / 67

From JSR 220 v3.0 “EJB Core Contracts and Requirements” (May 2006),
pp 353:

The Bean Provider and Application Assembler must avoid
creating applications that would result in inconsistent caching of
data in the same transaction by multiple session objects.

Cf nested transactions [Moss 85], multithreaded transactions [Kienzle 01]

Stefani (INRIA) Towards reversible languages and systems June 2012 2 / 67

From JSR 220 v3.0 “EJB Core Contracts and Requirements”, pp 357:

The Bean Provider must do one of the following to ensure data
integrity before throwing an application exception from an
enterprise bean instance:

Ensure that the instance is in a state such that a clients
attempt to continue and/or commit the transaction does
not result in loss of data integrity. For example, the instance
throws an application exception indicating that the value of
an input parameter was invalid before the instance
performed any database updates.
If the application exception is not specified to cause
transaction rollback, mark the transaction for rollback using
the EJBContext.setRollbackOnly method before throwing
the application exception. Marking the transaction for
rollback will ensure that the transaction can never commit.

Cf atomic exception handling [Fetzer07], failboxes [Jacobs 09]

Stefani (INRIA) Towards reversible languages and systems June 2012 3 / 67

We do not understand if/how the following compose

Exception handling
Concurrency
Transactions

Compensations
Groups, Replicas

Checkpoints, Rollback
Objects, Actors, Components

Stefani (INRIA) Towards reversible languages and systems June 2012 4 / 67

Enlarging/formalizing the bag of tricks

Exception handling [Collet 07][Fetzer 07]

Failboxes [Jacobs 09]

Transactors [Field 05]

Transactional Events [Fluet 06][Grossman 08]

Transactional memory [Grossman 08][Abadi10]

Transactional calculi [Acciai 07][deVries 10]

Compensations [Bruni 05][Lanese10]

Logs and conclaves [Chothia 04]

Stabilizers and checkpoints [Ziarek10]

Stefani (INRIA) Towards reversible languages and systems June 2012 5 / 67

Wanted

Semantical and Operational Foundations

for Fault-Tolerant Programming

Stefani (INRIA) Towards reversible languages and systems June 2012 6 / 67

Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives

Stefani (INRIA) Towards reversible languages and systems June 2012 7 / 67

Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives

Undo in fault-tolerant constructs

Application undo

System undo (ROC)

Checkpoint/Rollback schemes

Transaction rollback

Stefani (INRIA) Towards reversible languages and systems June 2012 8 / 67

Reversibility

What if we could undo every action ?
Language support for Recovery Oriented Computing (ROC)

Stefani (INRIA) Towards reversible languages and systems June 2012 9 / 67

Reversibility

R. Landauer

Irreversibility and Heat Generation
in the Computing Process

Abstract: It i s argued that computing machines inevitably involve devices which perform logical functions
that do not have a single-valued inverse. This logical irreversibility i s associated with physical irreversibility
and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible
function. This dissipation serves the purpose of standardizing signals and making them independent of their
exact logical history. Two simple, but representative, models of bistable devices are subjected to a more
detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and
to estimate the effects of errors induced by thermal fluctuations.

1. Introduction

The search for faster and more compact computing cir-
cuits leads directly to the question: What are the ultimate
physical limitations on the progress in this direction? In
practice the limitations are likely to be set by the need for
access to each logical element. At this time, however, it is
still hard to understand what physical requirements this
puts on the degrees of freedom which bear information.
The existence of a storage medium as compact as the
genetic one indicates that one can go very far in the
direction of compactness, at least if we are prepared to
make sacrifices in the way of speed and random access.

Without considering the question of access, however,
we can show, or at least very strongly suggest, that infor-
mation processing is inevitably accompanied by a certain
minimum amount of heat generation. In a general way
this is not surprising. Computing, like all processes pro-
ceeding at a finite rate, must involve some dissipation.
Our arguments, however, are more basic than this, and
show that there is a minimum heat generation, independ-
ent of the rate of the process. Naturally the amount of
heat generation involved is many orders of magnitude
smaller than the heat dissipation in any practically con-
ceivable device. The relevant point, however, is that the
dissipation has a real function and is not just an unneces-
sary nuisance. The much larger amounts of dissipation in
practical devices may be serving the same function.

Our conclusion about dissipation can be anticipated in
several ways, and our major contribution will be a tight-
ening of the concepts involved, in a fashion which will
give some insight into the physical requirements for logi-
cal devices. The simplest way of anticipating our conclu-
sion is to note that a binary device must have at least one

degree of freedom associated with the information. Clas-
sically a degree of freedom is associated with kT of
thermal energy. Any switching signals passing between
devices must therefore have this much energy to override
the noise. This argument does not make it clear that the
signal energy must actually be dissipated. An alternative
way of anticipating our conclusions is to refer to the argu-
ments by Brillouin and earlier authors, as summarized by
Brillouin in his book, Science and Information Theory,'
to the effect that the measurement process requires a
dissipation of the order of kT. The computing process,
where the setting of various elements depends upon the
setting of other elements at previous times, is closely akin
to a measurement. It is difficult, however, to argue out
this connection in a more exact fashion. Furthermore,
the arguments concerning the measurement process are
based on the analysis of specific models (as will some of
our arguments about computing), and the specific models
involved in the measurement analysis are rather far from
the kind of mechanisms involved in data processing. In
fact the arguments dealing with the measurement process
do not define measurement very well, and avoid the very
essential question: When is a system A coupled to a sys-
tem B performing a measurement? The mere fact that
two physical systems are coupled does not in itself require
dissipation.

Our main argument will be a refinement of the follow-
ing line of thought. A simple binary device consists of a
particle in a bistable potential well shown in Fig. 1. Let
us arbitrarily label the particle in the left-hand well as the
ZERO state. When the particle is in the right-hand well,
the device is in the ONE state. Now consider the operation 183

IBM JOURNAL JULY 1961

Stefani (INRIA) Towards reversible languages and systems June 2012 10 / 67

Using reversibility

Enabling defeasible partial agreements

Systematic rollback-recovery

Operational primitive for transaction models

all or nothing execution
complement with isolation, compensation

Stefani (INRIA) Towards reversible languages and systems June 2012 11 / 67

Using reversibility

Enabling causality tracking

Debugging

Diagnosis

Simulation

Fault isolation

Stefani (INRIA) Towards reversible languages and systems June 2012 12 / 67

Work programme

Reversible distributed programming model

reversible substrate, controlling reversibility
primitives, operational semantics, behavioral theory

Composable FT abstractions

benchmarks: transaction, checkpoint/rollback, exception handling
schemes
combination with modularity features

Prototype

implementation costs / tradeoffs for distributed reversibility
language experiments

Stefani (INRIA) Towards reversible languages and systems June 2012 13 / 67

Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives

Expected features

Higher-order π-calculus substrate

Concurrency, functional and imperative features in a simple setting

Formal (small-step) operational semantics

Behavioral theory (program equivalence)

Stefani (INRIA) Towards reversible languages and systems June 2012 14 / 67

Expected features

Reversible actions

If program M can evolve into M ′, then M ′ can evolve back into M :

M → M ′ implies M ′ → M

Stefani (INRIA) Towards reversible languages and systems June 2012 15 / 67

Expected features

Causal consistency

Any program state reached by reversal could have been reached during the
past computation (just by exchanging the order of concurrent actions)

Determinism in a distributed setting

Stefani (INRIA) Towards reversible languages and systems June 2012 16 / 67

Causal Consistency

P

S

RQ

m1 m2

m2 m1

Stefani (INRIA) Towards reversible languages and systems June 2012 17 / 67

Causal Consistency

P

S

RQ

m1 m2

m2 m1

Stefani (INRIA) Towards reversible languages and systems June 2012 18 / 67

Causal Consistency

P

S

RQ

m1 m2

m2 m1

Stefani (INRIA) Towards reversible languages and systems June 2012 19 / 67

Higher-order π-calculus

Syntax

P,Q ::= 0 null process

| X variable

| νa. P new name

| (P | Q) parallel composition

| a〈P 〉 message

| (a(X) . P) trigger

a ∈ N

Stefani (INRIA) Towards reversible languages and systems June 2012 20 / 67

Higher-order π-calculus

Operational semantics

Defined by means of a binary relation → between programs: → ⊆ P ×P

P → Q reads “P reduces (or evolves into) Q”

Stefani (INRIA) Towards reversible languages and systems June 2012 21 / 67

Higher-order π-calculus

Reduction rules

a〈Q〉 | (a(X) . P)→ P{Q/X}
P → Q

E[P]→ E[Q]

E ::= • | νa.E | (P | E) | (E | P) evaluation context

Stefani (INRIA) Towards reversible languages and systems June 2012 22 / 67

HOπ examples

a〈P 〉 | (a(X) . 0) → 0

a〈P 〉 | (a(X) . X | X) → P | P

Q | a〈P 〉 | (a(X) . 0) → Q | 0

Stefani (INRIA) Towards reversible languages and systems June 2012 23 / 67

Higher-order π-calculus

Syntactical equivalence

Given by relation ≡ ⊆ P × P
≡ is the smallest congruence that obeys the rules:

A | B ≡ B | A A | (B | C) ≡ (A | B) | C A | 0 ≡ A νa.0 ≡ 0

νa. νb. A ≡ νb. νa.A (νa.A) | B ≡ νa. (A | B)

Stefani (INRIA) Towards reversible languages and systems June 2012 24 / 67

HOπ examples

Q | a〈P 〉 | (a(X) . 0) → Q

a〈P 〉 | Q | (a(X) . X | X) → P | Q | P

Stefani (INRIA) Towards reversible languages and systems June 2012 25 / 67

HOπ examples

B = (a(X) . X | a〈X〉)
Bang(P) = νa. a〈P | B〉 | B

P = c(Y) . Y | Y

c〈Q〉 | Bang(P) → c〈Q〉 | P | Bang(P) → Q | Q | Bang(P)

Stefani (INRIA) Towards reversible languages and systems June 2012 26 / 67

Higher-order π-calculus

Observables

An event on channel a is observable from process P , notation P ↓a if

P ≡ ν~e. a〈Q〉 | R and a 6∈ ~e

Semantical equivalence

Two programs P,Q are (weakly) barbed bisimilar, notation P ≈ Q, if the
following conditions hold

if P ↓a, then Q→∗ Q′ and Q′↓a
if P → P ′, then Q→∗ Q′ and P ′ ≈ Q′
and the converse for Q and P .

→∗ is the reflexive and transitive closure of →

Stefani (INRIA) Towards reversible languages and systems June 2012 27 / 67

HOπ examples

P ≡ Q implies P ≈ Q

νa. a〈P 〉 ≈ 0

νa. a〈P 〉 | (a(X) . 0) ≈ 0

Stefani (INRIA) Towards reversible languages and systems June 2012 28 / 67

A reversible HOπ: rho-π

To make HOπ reversible:

Log each action (message receipt)

Uniquely identify action participants (thread tags)

Stefani (INRIA) Towards reversible languages and systems June 2012 29 / 67

A reversible HOπ: rho-π

Syntax

P,Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | (a(X) . P)

M,N ::= configurations

0 null configuration

| νu.M restriction

| (M | N) parallel

| κ : P thread

| [m; k] memory

a ∈ N , k ∈ T , u ∈ N ∪ T

Stefani (INRIA) Towards reversible languages and systems June 2012 30 / 67

A reversible HOπ: rho-π

Intuitions:

κ : P thread of computation (process) P uniquely identified by tag κ

[m; k] log of occurrence κ of action m (message receipt)

Stefani (INRIA) Towards reversible languages and systems June 2012 31 / 67

A reversible HOπ: rho-π

Syntax

κ ::= k | 〈h, h̃〉 · k tags

m ::= ((κ1 : a〈P 〉) | (κ2 : a(X) . Q)) action record

Stefani (INRIA) Towards reversible languages and systems June 2012 32 / 67

A reversible HOπ: rho-π

Operational semantics

Defined by means of a binary relation → ⊆ P ×P, which is the union of
a forward reduction relation � and of a backward one .

Stefani (INRIA) Towards reversible languages and systems June 2012 33 / 67

A reversible HOπ: rho-π

Reduction rules

m = (κ1 : a〈P 〉) | (κ2 : a(X) . Q)

(κ1 : a〈P 〉) | (κ2 : a(X) . Q)� νk. (k : Q{P /X}) | [m; k]

(k : P) | [m; k] m

Stefani (INRIA) Towards reversible languages and systems June 2012 34 / 67

rho-π examples

k1 : a〈P 〉 | k2 : a(X) . 0 → νk. k : 0 | [k1 : a〈P 〉 | k2 : a(X) . 0; k]

k : R | [k1 : a〈Q〉 | k2 : a(X) . P ; k] → k1 : a〈Q〉 | k2 : a(X) . P

Stefani (INRIA) Towards reversible languages and systems June 2012 35 / 67

A reversible HOπ: rho-π

Syntactical equivalence: building unique tags

κ : νa. P ≡ νa. κ : P

k :

n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn}

τi are non-null threads (ie messages or triggers)

Stefani (INRIA) Towards reversible languages and systems June 2012 36 / 67

Results

Theorem (Loop Lemma)

M →∗ N if and only if N →∗ M

Theorem (Causal consistency)

Let σ1 and σ2 be two coinitial traces. Then σ1 � σ2 if and only if σ1 and
σ2 are cofinal.

Theorem (Faithful encoding)

There exists a compositional encoding L•M : Prho-π → PHOπ such that for
all configurations M :

M ≈ LMM

Stefani (INRIA) Towards reversible languages and systems June 2012 37 / 67

What we have obtained

A small formal model for reversible concurrent
computation

“Ballistic” programs that non-deterministically explore their state space

Stefani (INRIA) Towards reversible languages and systems June 2012 38 / 67

What we have obtained

A model with fine-grained logs for action reversal

A model with explicit causal information on computations

Cf causal logging in distributed checkpoint/rollback schemes

A form of causal semantics for HOπ

Stefani (INRIA) Towards reversible languages and systems June 2012 39 / 67

What is missing ?

Controlling reversibility

Dealing with irreversible actions
eg, what about I/O ?

Stefani (INRIA) Towards reversible languages and systems June 2012 40 / 67

Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives

The roll-π calculus

Asynchronous, higher-order π
only forward reduction: receiving a process on a channel

Explicit rollback instruction
backward reduction triggered by roll

Stefani (INRIA) Towards reversible languages and systems June 2012 41 / 67

roll-π reversibility/causality substrate

Tagged processes: κ : P

Message receipts create memories : [m; k]

with m = κ1 : a〈P 〉 | κ2 : a(X) .γ Q

Unicity of tags ensured by structural congruence law :

k :

n∏
i=1

τi ≡ νh̃.
n∏
i=1

〈hi, h̃〉 · k : τi

with h̃ = {h1, . . . , hn} n > 1

Stefani (INRIA) Towards reversible languages and systems June 2012 42 / 67

The roll-π calculus

Syntax

P,Q ::= 0 | . . . | a(X) .γ P | roll k | roll γ

M,N ::= 0 | νu.M | (M | N) | κ : P | [m; k]

κ ::= k | 〈h, h̃〉 · k m ::= (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)

a, b, c ∈ N X ∈ VP γ ∈ VK u ∈ N ∪ K h, k ∈ K

Stefani (INRIA) Towards reversible languages and systems June 2012 43 / 67

The roll-π calculus

Reduction rules

m = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q2)

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q2)→ νk. (k : Q2{P,k/X,γ}) | [m; k]

N I k complete(N | [m; k] | (κ : roll k))

N | [m; k] | (κ : roll k)→ m | N k

Stefani (INRIA) Towards reversible languages and systems June 2012 44 / 67

Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

[k1 : M | k2 : N ;k] | k : b�roll k�

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

[k1 : M | k2 : N ;k]

[k : M1 | k3 : N1; k4]

�h1, h̃� · k4 : c�0� �h2, h̃� · k4 : roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

[k1 : M | k2 : N ;k]

[k : M1 | k3 : N1; k4]

�h1, h̃� · k4 : c�0� �h2, h̃� · k4 : roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Concurrent non-atomic rollback:hint

roll k

k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Result

Theorem (Correspondence HL - LL)

For all configurations M :

M HL ≈LL M

Stefani (INRIA) Towards reversible languages and systems June 2012 47 / 67

Adding compensations to roll-π: croll-π

New construct added: message with compensation: a〈P 〉÷ b〈Q〉

Modified reduction rules:

m = (κ1 : a〈P 〉÷C) | (κ2 : a(X) .γ Q2)

(κ1 : a〈P 〉÷C) | (κ2 : a(X) .γ Q2)→ νk. (k : Q2{P,k/X,γ}) | [m; k]

N I k complete(N | [m; k] | (κ : roll k)) m′ = xtr(m)

N | [m; k] | (κ : roll k)→ m′ | N k

xtr(a〈P 〉÷ c〈Q〉) = c〈Q〉 xtr(a〈P 〉) = a〈P 〉

Stefani (INRIA) Towards reversible languages and systems June 2012 48 / 67

Message compensations are not elementary

Can trigger arbitrary compensation processes

Can encode different compensation strategies

Stefani (INRIA) Towards reversible languages and systems June 2012 49 / 67

Endless retry

La〈P 〉÷ ?Mer = νt. Y | a〈P 〉÷ t〈Y 〉

Y = t(Z) . Z | a〈P 〉÷ t〈Z〉

Stefani (INRIA) Towards reversible languages and systems June 2012 50 / 67

Bounded retries

La〈P 〉÷ (n)c〈Q〉Mbr = νt. (t〈Z〉 . Z) | a〈P 〉÷ t〈φn(c〈Q〉)〉

φ0(c〈Q〉) = c〈Q〉

φn+1(c〈Q〉) = (t〈Z〉 . Z) | a〈P 〉÷ t〈φn(c〈Q〉)〉

Stefani (INRIA) Towards reversible languages and systems June 2012 51 / 67

Trigger compensations

La(X) .γ P ÷ b〈Q〉Mct = νc, d. c÷ d | (c .γ a(X) . P) | (d . b〈Q〉)

Stefani (INRIA) Towards reversible languages and systems June 2012 52 / 67

Encoding transactions with croll-π

All-or-nothing processes can be encoded

All-or-nothing: either complete execution or none at all

Processes: no restriction on the form of transactional processes

Stefani (INRIA) Towards reversible languages and systems June 2012 53 / 67

Encoding transactions with croll-π

[P,Q] = νa, c. a÷ c | (a .γ νt. P | t〈roll γ〉 | (t(X) . X)) | (c . Q)

Committing is consuming t〈roll γ〉
Aborting is releasing roll γ

P executes till it commits or aborts

On abort, the compensation process Q is released

Theorem

[•, •] is an all-or-nothing atomic construct with compensation

Stefani (INRIA) Towards reversible languages and systems June 2012 54 / 67

Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives

Implementation questions

How efficiently can we implement reversibility ?

What are the time/space complexity lower bounds ?

Stefani (INRIA) Towards reversible languages and systems June 2012 55 / 67

A simple higher-order concurrent language: µOz

S ::= Statements
skip Empty statement

| S1 S2 Sequential composition

| let x = v in S end Variable declaration

| if x then S1 else S2 end Conditional statements

| thread S end Thread creation

| let x = c in S end Procedure declaration

| { x x1 . . . xn } Procedure call

| let x = NewPort in S end Port creation

| { Send x y } Send on a port

| let x = { Receive y } in S end Receive from a port

v ::= true | false Simple values
c ::= proc { x1 . . . xn } S end Procedure

Stefani (INRIA) Towards reversible languages and systems June 2012 56 / 67

µOz abstract machine

〈skip T 〉 T

0 0

〈let x = v in S end T 〉 〈S{x′/x} T 〉
0 x′ = v

if x′ fresh

〈let x = c in S end T 〉 〈S{x′/x} T 〉
0 x′ = ξ ‖ ξ : c if x′, ξ fresh

〈if x then S1 else S2 end T 〉 〈S1 T 〉
x = true x = true

〈if x then S1 else S2 end T 〉 〈S2 T 〉
x = false x = false

Stefani (INRIA) Towards reversible languages and systems June 2012 57 / 67

µOz abstract machine

〈let x = NewPort in S end T 〉 〈S{x′
/x} T 〉

0 x′ = ξ ‖ ξ : ⊥ if x′, ξ fresh

〈thread S end T 〉 T ‖ 〈S 〈〉〉
0 0

〈{ x x1 . . . xn } T 〉 〈S{x1/y1} . . . {xn/yn} T 〉
x = ξ ‖ ξ : proc { y1 . . . yn } S end x = ξ ‖ ξ : proc { y1 . . . yn } S end

〈{ Send x y } T 〉 T

x = ξ ‖ ξ : Q x = ξ ‖ ξ : y;Q
〈let x = { Receive y } in S end T 〉 〈S{x′

/x} T 〉
y = ξ ‖ ξ : Q; z ‖ z = w y = ξ ‖ ξ : Q ‖ z = w ‖ x′ = w

if x′ fresh

Stefani (INRIA) Towards reversible languages and systems June 2012 58 / 67

µOz reversible abstract machine

t[H]〈skip C〉 t[H skip]C
0 0

t[H]〈let x = v in S end C〉 t[H ∗ x′]〈S{x′/x} 〈esc C〉〉
0 x′ = v

if x′ fresh

t[H]〈let x = c in S end C〉 t[H ∗ x′]〈S{x′/x} 〈esc C〉〉
0 x′ = ξ ‖ ξ : c if x′, ξ fresh

t[H]〈if x then S1 else S2 end C〉 t[H if(x)S2]〈S1 〈esc C〉〉
x = true x = true

t[H]〈if x then S1 else S2 end C〉 t[H if(x)S1]〈S2 〈esc C〉〉
x = false x = false

Stefani (INRIA) Towards reversible languages and systems June 2012 59 / 67

µOz reversible abstract machine

t[H]〈let x = NewPort in S end C〉 t[H ∗ x′]〈S{x
′
/x} 〈esc C〉〉

0 x′ = ξ ‖ ξ : ⊥|⊥
if x′, ξ fresh

t[H]〈thread S end C〉 t[H ∗ t′]C ‖ t′[⊥]〈S 〈〉〉
0 0

if t′ fresh

t[H]〈{ x (xi)
n
1 } C〉 t[H { x (xi)

n
1 }]〈S({xi/yi})n1 〈esc C〉〉

x = ξ ‖ ξ : proc { (yi)n1 } S end x = ξ ‖ ξ : proc { (yi)n1 } S end

t[H]〈{ Send x y } C〉 t[H ↑ x]C
x = ξ ‖ ξ : K|Kh x = ξ ‖ ξ : t :y;K|Kh

t[H]〈let y = { Receive x } in S end C〉 t[H ↓ x(y′)]〈S{y
′
/y} 〈esc C〉〉

θ ‖ ξ : K; t′ :z|Kh θ ‖ ξ : K|t′ :z, t;Kh ‖ y′ = w

if y′ fresh ∧ θ , x = ξ ‖ z = w

t[H]〈esc C〉 t[H esc]C
0 0

Stefani (INRIA) Towards reversible languages and systems June 2012 60 / 67

µOz reversible abstract machine

〈thread S end T 〉 T ‖ 〈S 〈〉〉
0 0

t[H]〈thread S end C〉 t[H ∗ t′]C ‖ t′[⊥]〈S 〈〉〉
0 0

if t′ fresh

Stefani (INRIA) Towards reversible languages and systems June 2012 61 / 67

µOz reversible abstract machine

〈let x = NewPort in S end T 〉 〈S{x′/x} T 〉
0 x′ = ξ ‖ ξ : ⊥ if x′, ξ fresh

t[H]〈let x = NewPort in S end C〉 t[H ∗ x′]〈S{x
′
/x} 〈esc C〉〉

0 x′ = ξ ‖ ξ : ⊥|⊥
if x′, ξ fresh

Stefani (INRIA) Towards reversible languages and systems June 2012 62 / 67

Results

Theorem (Linear overhead for reversibility)

Assume (t[⊥]〈S 〈〉〉, 0)→n
vm (M, θ), where →n

vm denotes n →vm steps.
Then

overhead(M, θ) ≤ n · stsize(S)

Theorem (Linear space lower bound for reversibility)

The amount of information to be stored to ensure causally consistent
reversibility of µOz programs is at least linear in the number of execution
steps.

Stefani (INRIA) Towards reversible languages and systems June 2012 63 / 67

Linear lower bound

Example

let a = NewPort in
let x = true in
let y = false in
let p1 = proc{} {Send a x} {p1} end in
let p2 = proc{} {Send a y} {p2} end in
let p3 = proc{} let z = {Receive a} in {p3} end in

thread {p1} end
thread {p2} end
thread {p3} end

Stefani (INRIA) Towards reversible languages and systems June 2012 64 / 67

Taking stock

Inherent linear overhead to reversibility in a concurrent setting

Tied to non-determinism

Scope for exploiting determinism

towards classical tradeoff: granularity of rollback / space overhead

Stefani (INRIA) Towards reversible languages and systems June 2012 65 / 67

Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives

Much work remains

Behavioral theory for croll-π

contextual equivalence, bisimulation proof techniques, etc

Primitives for reversibility control and compensation

e.g. encoding BPM compensation schemes in variants of croll-π

Primitives for general transactional constructs

what about isolation ?

Taking localities into account

modularity constructs (components), distribution

Reversible language design and implementation

exception handling as rollback/compensation, contracts for reversible
components, etc
garbage collection and debugging in a reversible language
multicore reversible virtual machine, associated algorithms, etc

Stefani (INRIA) Towards reversible languages and systems June 2012 66 / 67

Thank you for your attention

Questions ?

Stefani (INRIA) Towards reversible languages and systems June 2012 67 / 67

	The case for reversibility
	A small reversible concurrent language
	Adding rollback and compensations
	An abstract machine for a reversible concurrent language
	Perspectives

