Towards reversible languages and systems

Jean-Bernard Stefani

joint work with I. Lanese, M. Lienhardt, C.A. Mezzina and A. Schmitt

INRIA, France

Stefani (INRIA) Towards reversible languages and systems June 2012 1/67

From JSR 220 v3.0 “EJB Core Contracts and Requirements” (May 2006),
pp 353:

The Bean Provider and Application Assembler must avoid
creating applications that would result in inconsistent caching of
data in the same transaction by multiple session objects.

Cf nested transactions [Moss 85], multithreaded transactions [Kienzle 01]

Stefani (INRIA) Towards reversible languages and systems June 2012 2 /67

From JSR 220 v3.0 “EJB Core Contracts and Requirements”, pp 357:

The Bean Provider must do one of the following to ensure data
integrity before throwing an application exception from an
enterprise bean instance:

@ Ensure that the instance is in a state such that a clients
attempt to continue and/or commit the transaction does
not result in loss of data integrity. For example, the instance
throws an application exception indicating that the value of
an input parameter was invalid before the instance
performed any database updates.

o If the application exception is not specified to cause
transaction rollback, mark the transaction for rollback using
the EJBContext.setRollbackOnly method before throwing
the application exception. Marking the transaction for
rollback will ensure that the transaction can never commit.

Cf atomic exception handling [Fetzer07], failboxes [Jacobs 09]

Stefani (INRIA) Towards reversible languages and systems June 2012 3 /67

We do not understand if /how the following compose

Exception handling
Concurrency
Transactions

Compensations
Groups, Replicas
Checkpoints, Rollback
Objects, Actors, Components

Stefani (INRIA) Towards reversible languages and systems June 2012 4 /67

Enlarging/formalizing the bag of tricks

Exception handling [Collet 07][Fetzer 07]
Failboxes [Jacobs 09]

Transactors [Field 05]

Transactional Events [Fluet 06][Grossman 08]

o
o
o
o
@ Transactional memory [Grossman 08][Abadil0]
@ Transactional calculi [Acciai 07][deVries 10]

e Compensations [Bruni 05][Lanesel0]

@ Logs and conclaves [Chothia 04]

(]

Stabilizers and checkpoints [Ziarek10]

Stefani (INRIA) Towards reversible languages and systems June 2012 5 /67

Semantical and Operational Foundations

for Fault-Tolerant Programming

June 2012 6 /67

Roadmap

© The case for reversibility

© A small reversible concurrent language

© Adding rollback and compensations

@ An abstract machine for a reversible concurrent language

© Perspectives

Stefani (INRIA) Towards reversible languages and systems June 2012 7 /67

© The case for reversibility

Undo in fault-tolerant constructs

Application undo
System undo (ROC)
Checkpoint/Rollback schemes

Transaction rollback

Stefani (INRIA) Towards reversible languages and systems June 2012 8 /67

Reversibility

What if we could undo every action 7

Language support for Recovery Oriented Computing (ROC)

Stefani (INRIA) Towards reversible languages and systems June 2012 9 /67

Reversibility

R. Landaver

Irreversibility and Heat Generation
in the Computing Process

Abstract: It is argued that computing machines inevitably involve devices which perform logical functions
that do not have a single-valued inverse. This logical irreversibility is associated with physical irreversibility
and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible
function. This dissipation serves Ihe purpose of sldndurdlzmg signals and making them independent of their

, but repr ive, dels of bistable devices are subjected to a more

exact logical history. Two
detailed analysis of switching kmem:s to yield the relationship between speed and energy dissipation, and
to estimate the effects of errors induced by thermal fluctuations.

Stefani (INRIA) Towards reversible languages and systems 2012 10 / 67

Using reversibility

Enabling defeasible partial agreements

@ Systematic rollback-recovery

@ Operational primitive for transaction models

e all or nothing execution
e complement with isolation, compensation

Stefani (INRIA) Towards reversible languages and systems June 2012

Using reversibility

Enabling causality tracking

o Debugging
@ Diagnosis
e Simulation

@ Fault isolation

Stefani (INRIA) Towards reversible languages and systems June 2012 12 / 67

Work programme

@ Reversible distributed programming model

e reversible substrate, controlling reversibility
e primitives, operational semantics, behavioral theory

@ Composable FT abstractions

o benchmarks: transaction, checkpoint/rollback, exception handling
schemes
e combination with modularity features

@ Prototype

e implementation costs / tradeoffs for distributed reversibility
e language experiments

Stefani (INRIA) Towards reversible languages and systems June 2012 13 / 67

© A small reversible concurrent language

Expected features

Higher-order m-calculus substrate

@ Concurrency, functional and imperative features in a simple setting
e Formal (small-step) operational semantics

@ Behavioral theory (program equivalence)

Stefani (INRIA) Towards reversible languages and systems June 2012 14 / 67

Expected features

Reversible actions

If program M can evolve into M’, then M’ can evolve back into M:

M — M’ implies M’ — M

Stefani (INRIA) Towards reversible languages and systems June 2012 15 / 67

Expected features

Causal consistency

Any program state reached by reversal could have been reached during the
past computation (just by exchanging the order of concurrent actions)

Determinism in a distributed setting

Stefani (INRIA) Towards reversible languages and systems June 2012 16 / 67

Causal Consistency

m1
7

e\

N/

p
S

Stefani (INRIA) Towards reversible languages and systems June 2012 17 / 67

Causal Consistency

Stefani (INRIA Towards reversible languages and systems June 2012
guag

Causal Consistency
// 1 P m2 X
o0 M N,
/7 N\
‘ N\
‘ Q
\

. /
N S y,
N /

Stefani (INRIA) Towards reversible languages and systems June 2012 19 / 67

Higher-order m-calculus

PQ:=0 null process
| X variable
| va.P new name
| (P|Q) parallel composition
| a(P) message
| (a(X)> P) trigger
aeN

Stefani (INRIA) Towards reversible languages and systems June 2012 20 / 67

Higher-order m-calculus

Operational semantics

Defined by means of a binary relation — between programs: — C P x P

P — @ reads “P reduces (or evolves into) Q"

Stefani (INRIA) Towards reversible languages and systems June 2012 21 / 67

Higher-order m-calculus

Reduction rules

P—Q
a(@) | (a(X)>P) = P{?/x} E[P] — E[Q]

E:= e | vaE | (P|E) | (E|P) evaluation context

Stefani (INRIA) Towards reversible languages and systems June 2012 22 / 67

HOm examples

a(P) | (a(X)>0) — O
a(Py | (a(X)»pX|X) - P | P

Q| a(P) | (a(X)>0) — Q|0

Stefani (INRIA) Towards reversible languages and systems June 2012 23 / 67

Higher-order m-calculus

Syntactical equivalence
Given by relation =C P x P
= is the smallest congruence that obeys the rules:

A|B=B|A Al (B|C)=(A|B)|C Al0o=A va.0=0

va.vb. A =vb.va. A (va.A) | B=va.(A| B)

Stefani (INRIA)

Towards reversible languages and systems June 2012 24 / 67

HOm examples

Q| aP) | (a(X)>0) — @Q

alP) | Q [(a(X)>X[X) = P[Q]|P

Stefani (INRIA) Towards reversible languages and systems June 2012 25 / 67

HOm examples

B=(a(X)>X |a(X))
Bang(P) = va.a(P |B) | B
P=cY)pY|Y

¢(Q) | Bang(P) — ¢(Q)| P |Bang(P) — Q]Q |Bang(P)

Stefani (INRIA) Towards reversible languages and systems June 2012 26 / 67

Higher-order m-calculus

Observables

An event on channel a is observable from process P, notation P, if

P=vé.a(Q) | R and a¢e

Semantical equivalence

| A\

Two programs P, Q) are (weakly) barbed bisimilar, notation P = @, if the
following conditions hold

o if Pl,, then Q —* Q' and Q' |,
o if P— P, then Q »* Q and P/ ~ Q'

@ and the converse for) and P.

—™* is the reflexive and transitive closure of —

Stefani (INRIA) Towards reversible languages and systems June 2012

HOm examples

P=Q implies P~Q
va.a(P) =~ 0

va.a(P) | (a(X)>0) ~ 0

Stefani (INRIA) Towards reversible languages and systems June 2012 28 / 67

A reversible HO7: rho-7

To make HO~ reversible:
@ Log each action (message receipt)

@ Uniquely identify action participants (thread tags)

Stefani (INRIA) Towards reversible languages and systems June 2012 29 / 67

A reversible HO7: rho-7

PQ:=0]| X | va.P | (P|Q) | a(P) | (a(X)>P)

M,N ::= configurations
0 null configuration
| vu. M restriction
| (M|N) parallel
| k: P thread
| [m; k] memory

aeN,keT, ueNUT

v

Stefani (INRIA) Towards reversible languages and systems June 2012 30 / 67

A reversible HO7: rho-7

Intuitions:
@ r : P thread of computation (process) P uniquely identified by tag

e [m; k| log of occurrence « of action m (message receipt)

Stefani (INRIA) Towards reversible languages and systems June 2012 31/ 67

A reversible HO7: rho-7

ku=k | (hyh) k tags
m = ((k1 : a(P)) | (k2 : a(X)>Q)) action record

Stefani (INRIA) Towards reversible languages and systems June 2012 32 /67

A reversible HO7: rho-7

Operational semantics

Defined by means of a binary relation — C P x P, which is the union of
a forward reduction relation — and of a backward one ~~.

Stefani (INRIA) Towards reversible languages and systems June 2012 33 /67

A reversible HO7: rho-7

Reduction rules

m = (k1: a(P)) | (k2 : a(X) > Q)

(k1 : a(P)) | (k2 : a(X)>Q) = vk. (k: Q{"/x}) | [m; k]

(ks P) | [mi k] ~m

Stefani (INRIA) Towards reversible languages and systems June 2012 34 / 67

rho-m examples

ky:a(P) | ka:a(X)>0 — vk.k:0 | [k :a(P) | ka:a(X)>0;k]

kE:R | [k1:a(Q)|ka:a(X)>P; k] — ki:a(Q) | k2:a(X)>P

Stefani (INRIA) Towards reversible languages and systems June 2012 35 / 67

A reversible HO7: rho-7

Syntactical equivalence: building unique tags

k:va.P=va.k: P

k- ﬁn
i=1

vh. [[((hi,h) -k o 7) h={h1,... hn}
=1

7; are non-null threads (ie messages or triggers)

Stefani (INRIA)

Towards reversible languages and systems

June 2012

Theorem (Loop Lemma)
M —* N if and only if N —* M

Theorem (Causal consistency)

Let o1 and oy be two coinitial traces. Then o1 < o9 if and only if o1 and
o9 are cofinal.

Theorem (Faithful encoding)

There exists a compositional encoding (e)) : Prho-r — PHor Ssuch that for
all configurations M :

Stefani (INRIA) Towards reversible languages and systems June 2012 37 /67

What we have obtained

A small formal model for reversible concurrent
computation

“Ballistic" programs that non-deterministically explore their state space

Stefani (INRIA) Towards reversible languages and systems June 2012 38 / 67

What we have obtained

@ A model with fine-grained logs for action reversal

@ A model with explicit causal information on computations
o Cf causal logging in distributed checkpoint/rollback schemes

@ A form of causal semantics for HOx

Stefani (INRIA) Towards reversible languages and systems June 2012

e Controlling reversibility

@ Dealing with irreversible actions
e eg, what about I/O 7

Stefani (INRIA) Towards reversible languages and systems June 2012 40 / 67

e Adding rollback and compensations

The roll-7 calculus

o Asynchronous, higher-order 7
e only forward reduction: receiving a process on a channel

o Explicit rollback instruction
e backward reduction triggered by roll

Stefani (INRIA) Towards reversible languages and systems June 2012

roll- reversibility /causality substrate

o Tagged processes: ~ : P

@ Message receipts create memories : [m; k]
o with m = ky : a(P) | ko :a(X)>yQ

@ Unicity of tags ensured by structural congruence law :

k- ﬁTi = vh. ﬁ(hwm ke
i=1 =1

with o ={h1,...,hn} n>1

Stefani (INRIA)

Towards reversible languages and systems

June 2012

The roll-7 calculus

PQ:=0]...| a(X)>yP | rollk | roll

M,N:=0 | vuM | (M|N)| k:P | [m;k]

ku=k | (hyh)- -k m = (k1 :a(P)) | (k2 :a(X)>y Q)

a,b,ce N XeVp veVe ueNUK hkek

Stefani (INRIA) Towards reversible languages and systems June 2012 43 / 67

The roll-7 calculus

Reduction rules

m = (k1: a(P)) | (2 : a(X) by Q2)
(k1= a(P)) | (k2 : a(X) >y Q2) = vk. (k s Qo{"*/x}) | [K]

Nw»k complete(N | [m; k] | (k : roll k))
N | [m;k]| (k:roll k) = m | Nig

Stefani (INRIA) Towards reversible languages and systems June 2012

Rollback example

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Rollback example

ko al0) (ko a(X) 5y blroll 7)) (ks : b(X) > c(0)|X)

(k1 : M | ko : N;K] | k:b{roll k)

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Rollback example

ko al0) (ko a(X) 5y blroll 7)) (ks : b(X) > c(0)|X)

[k1: M | ko : N; K]

[k:Ml | kg:Nl;k4]

<h1, h> : k?4 : C<0> <h2, h> : k4 :roll k

Stefani (INRIA Towards reversible languages and systems June 2012
guag

Rollback example

ko al0) (ko a(X) 5y blroll 7)) (ks : b(X) > c(0)|X)

\
[kIM1|k35N1;k4]\

\

<h1, h> : k?4 : C<0> <h2, h> : k4 :roll k

Stefani (INRIA Towards reversible languages and systems June 2012
guag

Rollback example

Stefani (INRIA) Towards reversible languages and systems June 2012 45 / 67

Concurrent non-atomic rollback:hint

roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

roll k

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Concurrent non-atomic rollback:hint

Stefani (INRIA) Towards reversible languages and systems June 2012 46 / 67

Theorem (Correspondence HL - LL)

For all configurations M :

MHL ~ILL M

Stefani (INRIA) Towards reversible languages and systems June 2012 47 / 67

Adding compensations to roll-7: croll-m

@ New construct added: message with compensation: a(P) = b(Q)

@ Modified reduction rules:

m = (k1 :a(P)=+C) | (k2 :a(X)>yQ2)
(51 : alP) = C) | (k2 a(X) 5 Qa) = vk (s Qe ™ [}) | i)

N»k complete(N | [m;k] | (k : roll k)) m' = xtr(m)
N | [m;k] | (k:rollk) —m' | Ny

Stefani (INRIA) Towards reversible languages and systems June 2012 48 / 67

Message compensations are not elementary

o Can trigger arbitrary compensation processes

o Can encode different compensation strategies

Stefani (INRIA) Towards reversible languages and systems June 2012 49 / 67

Endless retry

(a(P) = +)ep = vt.Y | alP) + H{Y)

Y =¢(2)> Z | alP) = t{Z)

Stefani (INRIA) Towards reversible languages and systems June 2012 50 / 67

Bounded retries

Stefani (INRIA) owards systems June 2012 51 / 67

Trigger compensations

(a(X) 5y P=b(Q))er = ve,d.c+d | (coya(X) o P) | (dob(Q))

Stefani (INRIA) Towards reversible languages and systems June 2012 52 / 67

Encoding transactions with croll-m

All-or-nothing processes can be encoded

@ All-or-nothing: either complete execution or none at all

@ Processes: no restriction on the form of transactional processes

Stefani (INRIA) Towards reversible languages and systems June 2012

Encoding transactions with croll-m

\P,Ql =va,c.a=¢c| (apyvt. P |t(roll v) | (t(X)> X)) | (c>Q)

Committing is consuming ¢(roll ~y)
Aborting is releasing roll
P executes till it commits or aborts

On abort, the compensation process () is released

[e, o] is an all-or-nothing atomic construct with compensation

Stefani (INRIA) Towards reversible languages and systems June 2012 54 / 67

@ An abstract machine for a reversible concurrent language

Implementation questions

o How efficiently can we implement reversibility ?

o What are the time/space complexity lower bounds ?

Stefani (INRIA) Towards reversible languages and systems June 2012 55 / 67

A simple higher-order concurrent language: Oz

S u= Statements
Skip Empty statement
| Sl SQ Sequential composition
| let z =vin S end Variable declaration
| if = then Sl else SQ end Conditional statements
| thread S end Thread creation
’ let z =cin S end Procedure declaration
| { T T1...Ty } Procedure call
’ let x = NewPort in S end Port creation
| {Semdzy} Send on a port
’ let x = { Receive y } in S end Receive from a port
m= true | false Simple values
¢ == proc{z...z, } Send Procedure

Stefani (INRIA) Towards reversible languages and systems June 2012

1Oz abstract machine

(skip T') H T
0
(let z=vin SendT) H (S{*'/,} T) i o/ frosh
0 H ¥ =v
(let z=cin SendT) H STy,
if ', & fresh
0 H =& €&qc ¢
(if = then S; else Sy end T') (S1 1)
T = true T = true
(if = then S; else Sy end T') (So T)
x = false x = false

Stefani (INRIA)

Towards reversible languages and systems

June 2012

1Oz abstract machine

(let x = NewPort in S end T)
0

(thread Send T) || T | (S ()
0 0

S{x/w}T 0
T —EE L if 2/, ¢ fresh

{zz...2,} T) I S{ud - A"y T)
z=¢[[&:proc{y...yn } Send || z=¢[[&:proc{yi...yn } S end

({sendzy} T) | T
e=¢06:Q [a=¢l¢:y:Q
(let © = { Receive y } in S end T) (S{*'/,} T) o f

y=¢116:@Qzllz=w y=£&l¢:Qlz=wla"=w

June 2012 58 / 67

Stefani (INRIA) Towards reversible languages and systems

11Oz reversible abstract machine

t[H](skip C) | t[H skip]C

0 0
t[H](let z =vin Send C) || t{H *2'|(S{"/s} (esc C)) e
5 H P if 2’ fres
t[H](let z = cin S end C) H t{H *2')(S{"/.} (esc C)) if 2/ ¢ fresh
0 I F=¢léc ’
t[H](if = then S else Sy end C) | t[H if(x)S2](S; (esc C))
T = true T = true

t[H](if then S else S; end C) || t[H if(z

)S1](S2 (esc C))

z = false x = false

Stefani (INRIA) Towards reversible languages and systems

June 2012 59 / 67

11Oz reversible abstract machine

t[H](let © = NewPort in S end C) | ¢[H *a'|(S{*'/s} (esc C))

; if 2/, ¢ fresh
0 | P =¢ ¢ L]L

t[H](thread S end C) || t[H *t'|C || t'[L}(S () €17 frosh

0 | 0

tH]({ 2 ()7 } C) | tH { @ (z:)7 NS/ DT (esc C))
z=£&[¢:proc { (y)7 } Send | w=¢&:proc{ ()7 } Send
t{H]{{ Send z y } C) H t{H 1 z|C
c=¢[E: KKy || 2=¢[&:t:y; K[Kn

t[H](let y = { Receive x } in Send C) || #[H | =(y)|(S{*'/} (esc C))

0€: K;t':2|[Kn [0NE Kt 2, Kn ||y =w

t[H](esc C) H t[H esc|]C
0 I 0

Stefani (INRIA) Towards reversible languages and systems June 2012

11Oz reversible abstract machine

(thread Send T) | T || (S
0 | 0

if t' fresh

t[H](thread S end C) | t[H *t]C || ¢'[L](S ()
0 | 0

Stefani (INRIA) Towards reversible languages and systems June 2012 61 / 67

11Oz reversible abstract machine

if 2/, & fresh

(let 2 = NewPort in Send T') || (S{*/;} T)
0 | 2 =¢¢: L

if o', & fresh

t[H](let © = NewPort in S end C) | ¢[H *a')(S{*'/s} (esc C))
0 | =g 1L

Stefani (INRIA) Towards reversible languages and systems June 2012 62 / 67

Theorem (Linear overhead for reversibility)

Assume (t[L](S ()),0) =1, (M,0), where =7, denotes n —,,, steps.
Then
overhead (M,) < n - stsize(S)

Theorem (Linear space lower bound for reversibility)

The amount of information to be stored to ensure causally consistent
reversibility of uOz programs is at least linear in the number of execution

steps.

Stefani (INRIA) Towards reversible languages and systems June 2012 63 / 67

Linear lower bound

Example

let a = NewPort in

let x = true in

let y = false in

let p1 = proc{} {Send a x} {p1l} end in

let p2 = proc{} {Send a y} {p2} end in

let p3 = proc{} let z = {Receive a} in {p3} end in
thread {pl} end
thread {p2} end
thread {p3} end

Stefani (INRIA) Towards reversible languages and systems June 2012 64 / 67

Taking stock

@ Inherent linear overhead to reversibility in a concurrent setting
o Tied to non-determinism

@ Scope for exploiting determinism
o towards classical tradeoff: granularity of rollback / space overhead

Stefani (INRIA) Towards reversible languages and systems June 2012 65 / 67

© Perspectives

Much work remains

@ Behavioral theory for croll-m

e contextual equivalence, bisimulation proof techniques, etc
Primitives for reversibility control and compensation

e e.g. encoding BPM compensation schemes in variants of croll-7

Primitives for general transactional constructs
e what about isolation ?
@ Taking localities into account
o modularity constructs (components), distribution
@ Reversible language design and implementation
o exception handling as rollback/compensation, contracts for reversible
components, etc

e garbage collection and debugging in a reversible language
e multicore reversible virtual machine, associated algorithms, etc

Stefani (INRIA) Towards reversible languages and systems June 2012 66 / 67

Thank you for your attention

Questions ?

Stefani (INRIA) Towards reversible languages and systems June 2012 67 / 67

	The case for reversibility
	A small reversible concurrent language
	Adding rollback and compensations
	An abstract machine for a reversible concurrent language
	Perspectives

