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From JSR 220 v3.0 “EJB Core Contracts and Requirements” (May 2006),
pp 353:

The Bean Provider and Application Assembler must avoid
creating applications that would result in inconsistent caching of
data in the same transaction by multiple session objects.

Cf nested transactions [Moss 85], multithreaded transactions [Kienzle 01]
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From JSR 220 v3.0 “EJB Core Contracts and Requirements”, pp 357:

The Bean Provider must do one of the following to ensure data
integrity before throwing an application exception from an
enterprise bean instance:

Ensure that the instance is in a state such that a clients
attempt to continue and/or commit the transaction does
not result in loss of data integrity. For example, the instance
throws an application exception indicating that the value of
an input parameter was invalid before the instance
performed any database updates.
If the application exception is not specified to cause
transaction rollback, mark the transaction for rollback using
the EJBContext.setRollbackOnly method before throwing
the application exception. Marking the transaction for
rollback will ensure that the transaction can never commit.

Cf atomic exception handling [Fetzer07], failboxes [Jacobs 09]
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We do not understand if/how the following compose

Exception handling
Concurrency
Transactions

Compensations
Groups, Replicas

Checkpoints, Rollback
Objects, Actors, Components
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Enlarging/formalizing the bag of tricks

Exception handling [Collet 07][Fetzer 07]

Failboxes [Jacobs 09]

Transactors [Field 05]

Transactional Events [Fluet 06][Grossman 08]

Transactional memory [Grossman 08][Abadi10]

Transactional calculi [Acciai 07][deVries 10]

Compensations [Bruni 05][Lanese10]

Logs and conclaves [Chothia 04]

Stabilizers and checkpoints [Ziarek10]
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Wanted

Semantical and Operational Foundations

for Fault-Tolerant Programming
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Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives
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2 A small reversible concurrent language
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4 An abstract machine for a reversible concurrent language

5 Perspectives



Undo in fault-tolerant constructs

Application undo

System undo (ROC)

Checkpoint/Rollback schemes

Transaction rollback
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Reversibility

What if we could undo every action ?
Language support for Recovery Oriented Computing (ROC)

Stefani (INRIA) Towards reversible languages and systems June 2012 9 / 67



Reversibility

R. Landauer 

Irreversibility and Heat Generation 
in the Computing Process 

Abstract: It i s  argued  that computing machines inevitably involve devices which perform logical functions 
that do not have a single-valued inverse. This logical irreversibility i s  associated with physical irreversibility 
and requires a minimal  heat generation, per machine cycle, typically of the order of kT for each irreversible 
function. This dissipation serves the purpose of standardizing signals and  making them independent of their 
exact  logical history. Two simple, but representative, models of bistable devices are subjected to a more 
detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and 
to estimate the effects of errors induced by thermal fluctuations. 

1. Introduction 

The search for faster and  more compact  computing  cir- 
cuits  leads  directly to  the question: What  are  the ultimate 
physical limitations on  the progress in this  direction? In 
practice the limitations are likely to be set by the need for 
access to  each logical element. At this time, however, it is 
still hard  to understand  what physical requirements  this 
puts on  the degrees of freedom which bear  information. 
The existence of a  storage  medium  as  compact as  the 
genetic one indicates that  one  can go very far  in  the 
direction of compactness, at least if we are prepared to 
make sacrifices in the way of speed and  random access. 

Without considering the question of access, however, 
we can show, or at least very strongly suggest, that  infor- 
mation processing is inevitably accompanied by a  certain 
minimum amount of heat generation. In a general way 
this is not surprising. Computing, like all processes pro- 
ceeding at a finite rate, must involve some dissipation. 
Our arguments, however, are more basic than this, and 
show that  there is a minimum  heat  generation,  independ- 
ent of the  rate of the process. Naturally the  amount of 
heat generation involved is many orders of magnitude 
smaller than  the  heat dissipation in  any practically con- 
ceivable device. The relevant point, however, is that  the 
dissipation has a real function and is not just an unneces- 
sary nuisance. The  much larger  amounts of dissipation in 
practical devices may be serving the same  function. 

Our conclusion about dissipation can  be anticipated in 
several ways, and  our  major contribution will be a tight- 
ening of the concepts involved, in a  fashion which will 
give some  insight  into the physical requirements for logi- 
cal devices. The simplest way of anticipating our conclu- 
sion is to note that a  binary device must  have at least one 

degree of freedom associated with the information. Clas- 
sically a degree of freedom is associated with kT of 
thermal energy. Any switching signals passing between 
devices must  therefore have this  much energy to override 
the noise. This argument does not  make  it clear that  the 
signal energy must  actually be dissipated. An alternative 
way of anticipating our conclusions is to refer to  the argu- 
ments by Brillouin and earlier  authors,  as  summarized by 
Brillouin in his book, Science and Information Theory,' 
to  the effect that  the measurement  process  requires  a 
dissipation of the order of kT.  The computing process, 
where the setting of various elements depends upon the 
setting of other elements at previous times, is closely akin 
to a  measurement. It is difficult, however, to  argue  out 
this  connection in a more exact  fashion. Furthermore, 
the arguments  concerning the measurement process are 
based on the analysis of specific models (as will some of 
our arguments about  computing),  and the specific models 
involved in  the measurement analysis are rather  far  from 
the kind of mechanisms involved in  data processing. In 
fact  the arguments  dealing  with the measurement  process 
do  not define measurement very well, and avoid the very 
essential question: When is a system A coupled to a sys- 
tem B performing  a  measurement? The mere fact  that 
two physical systems are coupled  does  not in itself require 
dissipation. 

Our main argument will  be a refinement of the follow- 
ing  line of thought.  A  simple  binary device consists of a 
particle in a bistable potential well shown in Fig. 1. Let 
us arbitrarily label the particle in the left-hand well as the 
ZERO state.  When the particle is in the  right-hand well, 
the device is in the ONE state. Now consider  the  operation 183 

IBM JOURNAL JULY 1961 
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Using reversibility

Enabling defeasible partial agreements

Systematic rollback-recovery

Operational primitive for transaction models

all or nothing execution
complement with isolation, compensation
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Using reversibility

Enabling causality tracking

Debugging

Diagnosis

Simulation

Fault isolation
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Work programme

Reversible distributed programming model

reversible substrate, controlling reversibility
primitives, operational semantics, behavioral theory

Composable FT abstractions

benchmarks: transaction, checkpoint/rollback, exception handling
schemes
combination with modularity features

Prototype

implementation costs / tradeoffs for distributed reversibility
language experiments
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Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives



Expected features

Higher-order π-calculus substrate

Concurrency, functional and imperative features in a simple setting

Formal (small-step) operational semantics

Behavioral theory (program equivalence)
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Expected features

Reversible actions

If program M can evolve into M ′, then M ′ can evolve back into M :

M → M ′ implies M ′ → M
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Expected features

Causal consistency

Any program state reached by reversal could have been reached during the
past computation (just by exchanging the order of concurrent actions)

Determinism in a distributed setting
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Causal Consistency

P

S

RQ

m1 m2

m2 m1
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Causal Consistency

P
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m1 m2

m2 m1
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Causal Consistency

P
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Higher-order π-calculus

Syntax

P,Q ::= 0 null process

| X variable

| νa. P new name

| (P | Q) parallel composition

| a〈P 〉 message

| (a(X) . P ) trigger

a ∈ N
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Higher-order π-calculus

Operational semantics

Defined by means of a binary relation → between programs: → ⊆ P ×P

P → Q reads “P reduces (or evolves into) Q”

Stefani (INRIA) Towards reversible languages and systems June 2012 21 / 67



Higher-order π-calculus

Reduction rules

a〈Q〉 | (a(X) . P )→ P{Q/X}
P → Q

E[P ]→ E[Q]

E ::= • | νa.E | (P | E) | (E | P ) evaluation context
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HOπ examples

a〈P 〉 | (a(X) . 0) → 0

a〈P 〉 | (a(X) . X | X) → P | P

Q | a〈P 〉 | (a(X) . 0) → Q | 0
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Higher-order π-calculus

Syntactical equivalence

Given by relation ≡ ⊆ P × P
≡ is the smallest congruence that obeys the rules:

A | B ≡ B | A A | (B | C) ≡ (A | B) | C A | 0 ≡ A νa.0 ≡ 0

νa. νb. A ≡ νb. νa.A (νa.A) | B ≡ νa. (A | B)
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HOπ examples

Q | a〈P 〉 | (a(X) . 0) → Q

a〈P 〉 | Q | (a(X) . X | X) → P | Q | P
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HOπ examples

B = (a(X) . X | a〈X〉)
Bang(P ) = νa. a〈P | B〉 | B

P = c(Y ) . Y | Y

c〈Q〉 | Bang(P ) → c〈Q〉 | P | Bang(P ) → Q | Q | Bang(P )
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Higher-order π-calculus

Observables

An event on channel a is observable from process P , notation P ↓a if

P ≡ ν~e. a〈Q〉 | R and a 6∈ ~e

Semantical equivalence

Two programs P,Q are (weakly) barbed bisimilar, notation P ≈ Q, if the
following conditions hold

if P ↓a, then Q→∗ Q′ and Q′↓a
if P → P ′, then Q→∗ Q′ and P ′ ≈ Q′
and the converse for Q and P .

→∗ is the reflexive and transitive closure of →
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HOπ examples

P ≡ Q implies P ≈ Q

νa. a〈P 〉 ≈ 0

νa. a〈P 〉 | (a(X) . 0) ≈ 0
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A reversible HOπ: rho-π

To make HOπ reversible:

Log each action (message receipt)

Uniquely identify action participants (thread tags)
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A reversible HOπ: rho-π

Syntax

P,Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | (a(X) . P )

M,N ::= configurations

0 null configuration

| νu.M restriction

| (M | N) parallel

| κ : P thread

| [m; k] memory

a ∈ N , k ∈ T , u ∈ N ∪ T
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A reversible HOπ: rho-π

Intuitions:

κ : P thread of computation (process) P uniquely identified by tag κ

[m; k] log of occurrence κ of action m (message receipt)
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A reversible HOπ: rho-π

Syntax

κ ::= k | 〈h, h̃〉 · k tags

m ::= ((κ1 : a〈P 〉) | (κ2 : a(X) . Q)) action record
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A reversible HOπ: rho-π

Operational semantics

Defined by means of a binary relation → ⊆ P ×P, which is the union of
a forward reduction relation � and of a backward one  .
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A reversible HOπ: rho-π

Reduction rules

m = (κ1 : a〈P 〉) | (κ2 : a(X) . Q)

(κ1 : a〈P 〉) | (κ2 : a(X) . Q)� νk. (k : Q{P /X}) | [m; k]

(k : P ) | [m; k] m
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rho-π examples

k1 : a〈P 〉 | k2 : a(X) . 0 → νk. k : 0 | [k1 : a〈P 〉 | k2 : a(X) . 0; k]

k : R | [k1 : a〈Q〉 | k2 : a(X) . P ; k] → k1 : a〈Q〉 | k2 : a(X) . P
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A reversible HOπ: rho-π

Syntactical equivalence: building unique tags

κ : νa. P ≡ νa. κ : P

k :

n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn}

τi are non-null threads (ie messages or triggers)
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Results

Theorem (Loop Lemma)

M →∗ N if and only if N →∗ M

Theorem (Causal consistency)

Let σ1 and σ2 be two coinitial traces. Then σ1 � σ2 if and only if σ1 and
σ2 are cofinal.

Theorem (Faithful encoding)

There exists a compositional encoding L•M : Prho-π → PHOπ such that for
all configurations M :

M ≈ LMM
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What we have obtained

A small formal model for reversible concurrent
computation

“Ballistic” programs that non-deterministically explore their state space
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What we have obtained

A model with fine-grained logs for action reversal

A model with explicit causal information on computations

Cf causal logging in distributed checkpoint/rollback schemes

A form of causal semantics for HOπ

Stefani (INRIA) Towards reversible languages and systems June 2012 39 / 67



What is missing ?

Controlling reversibility

Dealing with irreversible actions
eg, what about I/O ?
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Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives



The roll-π calculus

Asynchronous, higher-order π
only forward reduction: receiving a process on a channel

Explicit rollback instruction
backward reduction triggered by roll
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roll-π reversibility/causality substrate

Tagged processes: κ : P

Message receipts create memories : [m; k]

with m = κ1 : a〈P 〉 | κ2 : a(X) .γ Q

Unicity of tags ensured by structural congruence law :

k :

n∏
i=1

τi ≡ νh̃.
n∏
i=1

〈hi, h̃〉 · k : τi

with h̃ = {h1, . . . , hn} n > 1
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The roll-π calculus

Syntax

P,Q ::= 0 | . . . | a(X) .γ P | roll k | roll γ

M,N ::= 0 | νu.M | (M | N) | κ : P | [m; k]

κ ::= k | 〈h, h̃〉 · k m ::= (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)

a, b, c ∈ N X ∈ VP γ ∈ VK u ∈ N ∪ K h, k ∈ K
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The roll-π calculus

Reduction rules

m = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q2)

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q2)→ νk. (k : Q2{P,k/X,γ}) | [m; k]

N I k complete(N | [m; k] | (κ : roll k))

N | [m; k] | (κ : roll k)→ m | N k
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Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)
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Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

[k1 : M | k2 : N ;k] | k : b�roll k�
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Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)

[k1 : M | k2 : N ;k]

[k : M1 | k3 : N1; k4]

�h1, h̃� · k4 : c�0� �h2, h̃� · k4 : roll k
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Rollback example

k1 : a�0� (k2 : a(X) �γ b�roll γ�) (k3 : b(X) � c�0�|X)
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Concurrent non-atomic rollback:hint

roll k

k
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Concurrent non-atomic rollback:hint

k
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Concurrent non-atomic rollback:hint
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Result

Theorem (Correspondence HL - LL)

For all configurations M :

M HL ≈LL M
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Adding compensations to roll-π: croll-π

New construct added: message with compensation: a〈P 〉÷ b〈Q〉

Modified reduction rules:

m = (κ1 : a〈P 〉÷C) | (κ2 : a(X) .γ Q2)

(κ1 : a〈P 〉÷C) | (κ2 : a(X) .γ Q2)→ νk. (k : Q2{P,k/X,γ}) | [m; k]

N I k complete(N | [m; k] | (κ : roll k)) m′ = xtr(m)

N | [m; k] | (κ : roll k)→ m′ | N k

xtr(a〈P 〉÷ c〈Q〉) = c〈Q〉 xtr(a〈P 〉) = a〈P 〉
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Message compensations are not elementary

Can trigger arbitrary compensation processes

Can encode different compensation strategies
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Endless retry

La〈P 〉÷ ?Mer = νt. Y | a〈P 〉÷ t〈Y 〉

Y = t(Z) . Z | a〈P 〉÷ t〈Z〉
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Bounded retries

La〈P 〉÷ (n)c〈Q〉Mbr = νt. (t〈Z〉 . Z) | a〈P 〉÷ t〈φn(c〈Q〉)〉

φ0(c〈Q〉) = c〈Q〉

φn+1(c〈Q〉) = (t〈Z〉 . Z) | a〈P 〉÷ t〈φn(c〈Q〉)〉
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Trigger compensations

La(X) .γ P ÷ b〈Q〉Mct = νc, d. c÷ d | (c .γ a(X) . P ) | (d . b〈Q〉)
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Encoding transactions with croll-π

All-or-nothing processes can be encoded

All-or-nothing: either complete execution or none at all

Processes: no restriction on the form of transactional processes
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Encoding transactions with croll-π

[P,Q] = νa, c. a÷ c | (a .γ νt. P | t〈roll γ〉 | (t(X) . X)) | (c . Q)

Committing is consuming t〈roll γ〉
Aborting is releasing roll γ

P executes till it commits or aborts

On abort, the compensation process Q is released

Theorem

[•, •] is an all-or-nothing atomic construct with compensation
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Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives



Implementation questions

How efficiently can we implement reversibility ?

What are the time/space complexity lower bounds ?
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A simple higher-order concurrent language: µOz

S ::= Statements
skip Empty statement

| S1 S2 Sequential composition

| let x = v in S end Variable declaration

| if x then S1 else S2 end Conditional statements

| thread S end Thread creation

| let x = c in S end Procedure declaration

| { x x1 . . . xn } Procedure call

| let x = NewPort in S end Port creation

| { Send x y } Send on a port

| let x = { Receive y } in S end Receive from a port

v ::= true | false Simple values
c ::= proc { x1 . . . xn } S end Procedure
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µOz abstract machine

〈skip T 〉 T

0 0

〈let x = v in S end T 〉 〈S{x′/x} T 〉
0 x′ = v

if x′ fresh

〈let x = c in S end T 〉 〈S{x′/x} T 〉
0 x′ = ξ ‖ ξ : c if x′, ξ fresh

〈if x then S1 else S2 end T 〉 〈S1 T 〉
x = true x = true

〈if x then S1 else S2 end T 〉 〈S2 T 〉
x = false x = false
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µOz abstract machine

〈let x = NewPort in S end T 〉 〈S{x′
/x} T 〉

0 x′ = ξ ‖ ξ : ⊥ if x′, ξ fresh

〈thread S end T 〉 T ‖ 〈S 〈〉〉
0 0

〈{ x x1 . . . xn } T 〉 〈S{x1/y1} . . . {xn/yn} T 〉
x = ξ ‖ ξ : proc { y1 . . . yn } S end x = ξ ‖ ξ : proc { y1 . . . yn } S end

〈{ Send x y } T 〉 T

x = ξ ‖ ξ : Q x = ξ ‖ ξ : y;Q
〈let x = { Receive y } in S end T 〉 〈S{x′

/x} T 〉
y = ξ ‖ ξ : Q; z ‖ z = w y = ξ ‖ ξ : Q ‖ z = w ‖ x′ = w

if x′ fresh
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µOz reversible abstract machine

t[H]〈skip C〉 t[H skip]C
0 0

t[H]〈let x = v in S end C〉 t[H ∗ x′]〈S{x′/x} 〈esc C〉〉
0 x′ = v

if x′ fresh

t[H]〈let x = c in S end C〉 t[H ∗ x′]〈S{x′/x} 〈esc C〉〉
0 x′ = ξ ‖ ξ : c if x′, ξ fresh

t[H]〈if x then S1 else S2 end C〉 t[H if(x)S2]〈S1 〈esc C〉〉
x = true x = true

t[H]〈if x then S1 else S2 end C〉 t[H if(x)S1]〈S2 〈esc C〉〉
x = false x = false
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µOz reversible abstract machine

t[H]〈let x = NewPort in S end C〉 t[H ∗ x′]〈S{x
′
/x} 〈esc C〉〉

0 x′ = ξ ‖ ξ : ⊥|⊥
if x′, ξ fresh

t[H]〈thread S end C〉 t[H ∗ t′]C ‖ t′[⊥]〈S 〈〉〉
0 0

if t′ fresh

t[H]〈{ x (xi)
n
1 } C〉 t[H { x (xi)

n
1 }]〈S({xi/yi})n1 〈esc C〉〉

x = ξ ‖ ξ : proc { (yi)n1 } S end x = ξ ‖ ξ : proc { (yi)n1 } S end

t[H]〈{ Send x y } C〉 t[H ↑ x]C
x = ξ ‖ ξ : K|Kh x = ξ ‖ ξ : t :y;K|Kh

t[H]〈let y = { Receive x } in S end C〉 t[H ↓ x(y′)]〈S{y
′
/y} 〈esc C〉〉

θ ‖ ξ : K; t′ :z|Kh θ ‖ ξ : K|t′ :z, t;Kh ‖ y′ = w

if y′ fresh ∧ θ , x = ξ ‖ z = w

t[H]〈esc C〉 t[H esc]C
0 0
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µOz reversible abstract machine

〈thread S end T 〉 T ‖ 〈S 〈〉〉
0 0

t[H]〈thread S end C〉 t[H ∗ t′]C ‖ t′[⊥]〈S 〈〉〉
0 0

if t′ fresh
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µOz reversible abstract machine

〈let x = NewPort in S end T 〉 〈S{x′/x} T 〉
0 x′ = ξ ‖ ξ : ⊥ if x′, ξ fresh

t[H]〈let x = NewPort in S end C〉 t[H ∗ x′]〈S{x
′
/x} 〈esc C〉〉

0 x′ = ξ ‖ ξ : ⊥|⊥
if x′, ξ fresh
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Results

Theorem (Linear overhead for reversibility)

Assume (t[⊥]〈S 〈〉〉, 0)→n
vm (M, θ), where →n

vm denotes n →vm steps.
Then

overhead(M, θ) ≤ n · stsize(S)

Theorem (Linear space lower bound for reversibility)

The amount of information to be stored to ensure causally consistent
reversibility of µOz programs is at least linear in the number of execution
steps.
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Linear lower bound

Example

let a = NewPort in
let x = true in
let y = false in
let p1 = proc{} {Send a x} {p1} end in
let p2 = proc{} {Send a y} {p2} end in
let p3 = proc{} let z = {Receive a} in {p3} end in

thread {p1} end
thread {p2} end
thread {p3} end
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Taking stock

Inherent linear overhead to reversibility in a concurrent setting

Tied to non-determinism

Scope for exploiting determinism

towards classical tradeoff: granularity of rollback / space overhead
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Roadmap

1 The case for reversibility

2 A small reversible concurrent language

3 Adding rollback and compensations

4 An abstract machine for a reversible concurrent language

5 Perspectives



Much work remains

Behavioral theory for croll-π

contextual equivalence, bisimulation proof techniques, etc

Primitives for reversibility control and compensation

e.g. encoding BPM compensation schemes in variants of croll-π

Primitives for general transactional constructs

what about isolation ?

Taking localities into account

modularity constructs (components), distribution

Reversible language design and implementation

exception handling as rollback/compensation, contracts for reversible
components, etc
garbage collection and debugging in a reversible language
multicore reversible virtual machine, associated algorithms, etc
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Thank you for your attention

Questions ?
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