QoS-Aware Management
of Monotonic Service Orchestrations

A 5 years project, jointly developed with A. Benveniste and 2 PhDs at
IRISA/INRIA, in collaboration with Misra's group in Austin UT

June 22, 2012

Claude Jard () keynote — GPL2012 June 22, 2012 1/42

Introduction

Wide-area computing

» Services are building blocks for creating open distributed applications

> Services may be composed together to form new services
(orchestrations, choreographies)

» Importance of contracts in an open world (SLAs), including non
functional aspects (latency, security, cost, ...)

» Managing business processes over a Web infrastructure

» The example of ORC programming language (J. Misra, Austin), as an
clean alternative of BPEL

Claude Jard () keynote — GPL2012 June 22, 2012 2/ 42

Introduction

Typical example

> A typical example alike travel services: a service is composed by
reusing existing services exposed by other providers seen as
sub-contractors.

» Garantees must be offered:

» Functional: the composed service shall offer what it is supposed to
» QoS: with some agreed security and performance (SLA)

Claude Jard () keynote — GPL2012 June 22, 2012 3/42

Introduction

Small example in a Petri net style

SubmitOrder(location, budget)

best(cost)

Company; Ij—v—]

best(latency)

I I B I

Timeout Invoice

» Data-dependent workflow
» Multi-dimensional QoS

Claude Jard () keyno

4&

@ Company,

P9

Hotel, EL J:] Hotelg

Q enough budget?

te — GPL2012

Resubmit(budget)

4/ 42

Introduction

Small example in a Petri net style

SubmitOrder(location, budget)

best(cost)

Company; EL‘ J:] Company,

best(cost, cat)

Hotelx EL J:] Hotelg

best(latency) enough budget?

I T e

Timeout Invoice Resubmit(budget)

» Data-dependent workflow
» Multi-dimensional QoS

Claude Jard () keynote — GPL2012 June 22, 2012

5/ 42

Introduction

QoS analysis (quite different from networks)

» Combining transactional Web services

» Seen as “black-" or “grey-boxes”, exposed through their semantically
rich interface (WSDL++ ,WSLA++, ...)
> Infrastructure-agnostic (SOAP, REST)

» Semi-open world

v

Typically professional

» Extranet, E-enterprise, E-business

» Business management

» Good balance btw fubnctionality, security, safety/correctness, and QoS

» Tangency with automation management, and, to a lesser extent,
manufacturing systems design

» a world of contracts

Claude Jard () keynote — GPL2012 June 22, 2012 6 /42

Introduction

Outline

Introduction
Monotonicity in QoS
QoS computation
Implementation in ORC
Soft contracts
Monitoring

Conclusion

Claude Jard () keynote — GPL2012 June 22, 2012 7/ 42

Monotonicity in QoS

Monotonicity

Implicit assumption in contract-based management:

QoS improvements in component services can only be better for the
composite service.

» Can be false...

Claude Jard () keynote — GPL2012 June 22, 2012 8 /42

Monotonicity in QoS

Non monotonicity

SubmitOrder(location, budget)

4EL

best(cost)

Company; F Company»

® O

Hotelx l 0| Hotelg
best(/am enough budget?
[] D [f——

Timeout Invoice Resubmit(budget)

» End-to-end cost = 20

Claude Jard () keynote — GPL2012

June 22, 2012

9/ 42

Monotonicity in QoS

Non monotonicity

SubmitOrder(location, budget)

4&

best(cost)

Company; F Company»

Hotelx l 0| Hotelg
best(/am enough budget?
[] D [f—

Timeout Invoice Resubmit(budget)

» Cost of Company, has been improved to 5
» End-to-end cost = 25 is worse!

Claude Jard () keynote — GPL2012 June 22, 2012

10 / 42

Monotonicity in QoS

Theorems

» Loose monotonicity: considering maximum QoS for all possible
branching choices ensures monotonicity. May lead in practice to very
pessiministic QoS estimations.

» Computing branching cells (by unfolding) allows for detection of non
monotonicity. Monotonicity is undecidable in general.

» A syntactical sufficient condition for monotonicity is that, each time
branching has occurred in net N, a join occurs right after.

Claude Jard () keynote — GPL2012 June 22, 2012 11 / 42

QoS computation

QoS domain

» Partially ordered domain Q = (D, <, ®, <) that is a complete upper
lattice (the least upper bound operator V meaning taking the “worst
QoS and is used during synchronization)

» Operator @ : D x D — D captures how a transition increments the
QoS value. @ must be monotonic w.r.t. <

» Competition function <: D x D* — D (must be also monotonic)

Claude Jard () keynote — GPL2012 June 22, 2012 12 / 42

QoS computation

Examples of QoS domains

v

Latency: Q = (R™, <, +,<) where dy < d> = d; (the winner is the
first arrived)

Security: Q = ({low,high}, high < low, Vv, <)

Cost: Q= ({1} = N,C,+,<)

Composite QoS (product): Q = ((D1,D1), <1 x <o, 4+, (<1,<R))
Composite QoS (priority): suppose Qq is security and Q3 is latency.

» < is the lexicographic order from (<;, <5)
> (s,d)<(s’,d")= if d <d and s = low then (s,d’) else (s, d) (wait is
needed to decide who wins the competition)

vV vy VvV Yy

Claude Jard () keynote — GPL2012 June 22, 2012 13 / 42

QoS computation

QoS computation

» Tokens bring the QoS information

> If ((g1V g2) ®9:) < (g2 @ 6y) then t fires and
q = ((q1V q2) ®) <(q2 ® dr)

> If ((q1V q2) @ 0t) > (g2 @ dy) then t’ fires and
q" =(2®) <((qV q2) ® 0t)

» Else choose non deterministically to fire t or t/

Claude Jard () keynote — GPL2012 June 22, 2012 14 / 42

Implementation in ORC

ORC (Misra's group at Austin UT)

> Sites: the fundamental unit of computation. Similar to functions but
may be remote and therefore unreliable. Publishes the value returned
by the site.

» Combinators: only four:

do f and g in parallel: | g

for all x from f do g (sequential composition): f >x> g
for some x from g do f (pruning): f <x< g

if f completes without publishing do g (otherwise): f ; g

vV vy vYyy

» functions

» a lot of built-in sites

Claude Jard () keynote — GPL2012 June 22, 2012 15 / 42

Implementation in ORC

Symmetric composition f | g

» Evaluate f and g independently
» Publish all values from both

» No direct communication of interaction between f and g. They can
communicate only through sites.

» Example:
CNN(d) | BBC(d)

returns 0,1 or 2 values.

Claude Jard () keynote — GPL2012 June 22, 2012 16 / 42

Implementation in ORC

Sequential composition f >x> g

v

For all values published by f do g

» Publish only the values from g
» Example:

CNN(d) >x> Email(address, x)
» Example:

(CNN(d) | BBC(d)) >x> Email(address, x)

may call Email twice.

Claude Jard () keynote — GPL2012 June 22, 2012 17 / 42

Implementation in ORC

Pruning f <x< g

» Evaluate f and g in parallel. Site calls that need x are suspended.

» Example:
(M() | N(x)) <x< g

» When g returns a (first) value, bind the value to x, terminate g and
resume suspended calls.

» Example:
Email(address, x) <x< (CNN(d) | BBC(d))

sends at most one email.

Claude Jard () keynote — GPL2012 June 22, 2012 18 / 42

Implementation in ORC

Fork-join parallelism

» Call M and N in parallel
» Return their values as a tuple after both respond

» Example:
((u,v) <u< M()) <v<N()

Claude Jard () keynote — GPL2012 June 22, 2012

19 / 42

Implementation in ORC

Otherwise f ; g

Do f. If f completes without publishing then do g.

> An expression completes if its execution can take no more steps, and
all called sites have either responded, or will never respond.

» All library sites in ORC are helpful (indicate if they halt).
» Example:

(h >x> printin(x) > ift(false)) ; " done”

» Example: print all publications of h. When h completes, publish
“done”.

Claude Jard () keynote — GPL2012 June 22, 2012 20 / 42

Implementation in ORC

Concurrent function calls

def Metronome() = signal | (Rwait(1000) > Metronome())

(Metronome() > " tick”) | (Rwait(500) > Metronome() " tock”)

Claude Jard () keynote — GPL2012 June 22, 2012 21/ 42

Implementation in ORC

Causality and QoS

Goal:
» Specified as an ORC program transformation: P — P’

» P’ behaves as P, but produces extra information about causality and

QoS
Approach:

» Events in ORC are site calls (and returns) and publications (including
intermediate ones)

» The idea is to instrument each event e with causal and QoS
additional information: (e, pre(e), q(e))

Claude Jard () keynote — GPL2012 June 22, 2012 22 /42

Implementation in ORC

Causality tracking as a basis for QoS computation

Original program P
("The winner is " + x) <x< (Prompt("?") | Prompt ("?2"))
Transformed program P’
(x> (vx,_)>
("The winner is " 4+ vx, ("The winner is ", []):[x]))
<x< ((("Prompt", [])>ul>Prompt ("?2")>wl>(wl, [ull)) |
(("Prompt", [])>u2>Prompt ("?2")>w2> (w2, [u2])))

Claude Jard () keynote — GPL2012 June 22, 2012 23 /42

Implementation in ORC

Example of response times
("The winner is Claude", [("The winner is ", [1]),
("Claude", [("Prompt", []1)]1)])

"The winner is ", dO "Prompt ", d1

"Claude", d2

"The winner is Claude", max(d0,d1+d2)

Claude Jard () keynote — GPL2012 June 22, 2012

24 / 42

Implementation in ORC

The ORC calculus

% € Value
X,X1,...,Xnp € Variable
f.g € Expression = v |x|x(x1,....,x:) || gl

f>x>g|f<x<gl|fi;gl
def x(x1,...,x,) =fg

Claude Jard () keynote — GPL2012 June 22, 2012

25 / 42

Implementation in ORC

Transformation rules for causality

[vle — (v.¢)
[xXle — (vi{x}Uc) <(v,)< x {- v fresh -}
— function call {- vi,c1,..., Vn,cp fresh -}

IIX(le"')Xn)]]C - X((V]_,C]_UC)<(V]_,C]_)<X1,...,
(Vn,cnUc) < (Va, €n) < Xxn)
— site call {-vi,¢1,...,Vn,Cn, Y,u, v fresh -}

[x(xas - xn)le — (6 UicicnciUc) >u> x(vi, ..., va)
>(v, Y)> (v, Y U{u}))
<(vi,c1)< x1... <(Vn, Cn)< Xn
[f1&le — [flc|lele
[f >x>gle — [fle >x> [l
[f <x<gle — [fle <x<[el.
[def x(x1,...,x,) = fg]le — def x(x1,...,x1) = [flclg]ec

Claude Jard () keynote — GPL2012 June 22, 2012 26 / 42

Implementation in ORC

The otherwise operator: tracking halts

All events inside the scope of the f; g operator are recorded in a buffer.

When f halts, they form the causes of the halting event h, cause of g.

val trace = Buffer()
def max([], u) = trace.put(u)
def max(m: ms, (x, px)) = if member(m, px) then signal
else trace.put(m)) > max(ms, (x, px))
def record(u) = trace.getAll() >ms> max(ms, u)
def track(u) = (u, record(u)) > (y,.) >y

[f;gle — [flc; track(("h", trace.getAll())) >x> [glixy
—x fresh

Claude Jard () keynote — GPL2012 June 22, 2012

27 / 42

Implementation in ORC

Extension with QoS

Consider the general case of composite QoS domain, which is partially
ordered

Q= (qu Sqa@q)

» Each event is equipped with a QoS increment value

e=((v,q,Q), pre(e))

» The associated QoS may be recursively computed using the causal

past
Qe) = \V QE)| & ale)
e’epre(e) increment

synchronizing the causes

Claude Jard () keynote — GPL2012 June 22, 2012 28 / 42

Implementation in ORC

Extending ORC with a best QoS pruning operator: solving
conflicts by QoS competition

New pruning operator Demands in general to wait for all the first
publications of g

f<x<q8

Q = (Dq, <q,Bg, <q)

» Direct conflicts are recorded with the event
e = ((v, g, Q)pre(e), directconflicts(e))

» Used in the QoS computation

Qe) = V Q)| @qale) | <(Qe)] € € #(e))

e’epre(e)

Claude Jard () keynote — GPL2012 June 22, 2012 29 / 42

Implementation in ORC

Implementation: the principles

> Separate description of the composite QoS domain and its related
algebra

» The original ORC program is then weaved (instrumented) with the
QoS description

» Publications of the weaved program contain the QoS information

» Use of XML/OIL intermediate form

» This form is parsed and printed using SCALA functions

» Rules are implemented using ORC expressions and sites implemented in
SCALA

» The ORC engine executes the transformed OIL program

Claude Jard () keynote — GPL2012 June 22, 2012 30/ 42

Implementation in ORC

SLA description in ORC

def bestQoS(comparer, publisher) = head(sortBy(comparer, publisher))
def class InterQueryTime()=

def Qos(sitex) =

val s = {. r = Ref(0), ¢ = Channel() .}

val curTime = Rclock().time()

8.r? >p> (s.c.put(curTime-p) | s.r:=(curTime)) >>

Dictionary() >sitex> sitex.InterQueryTime := s

def QoSCompare(itl,it2) = itl >= it2

def QosSCompete(itl,it2) = bestQoS(QoSCompare,[itl,it2])
stop

def class ResponseTime() =
def Qos(sitex,d) = Rclock().time()-d + 100 >g> q
def QoSOplus(rtl,rt2) = rtl+rt2
def QosCompare(rtl,rt2) = rtl <= rt2
def QosCompete(rtl,rt2) = bestQoS(QoSCompare,[rtl,rt2])
def QosVee(rtl,rt2) = max(rtl,rt2)
stop

def class Cost() =
def Qos(sitex,c)=
val s = Ref([])
8? >x> QoSOplus(x,[]) >g> s:= g >> Dictionary() >sitex> sitex.Cost := s
def QosOplus(cl,c2) =
def Oplus([1,[1) = []
def Oplus(x:xs,y:ys) = (x+y):0Oplus(xs,ys)
Oplus(cl,c2)
def QosCompare(cl,c2) =
def Compare([],[]) = true
def Compare(x:xs,y:ys) = (X <= y) && Compare(xs,ys)
Compare(cl,c2)
def QosCompete(cl,c2) = bestQoS(QoSCompare,[cl,c2])
def Qosvee(cl,c2) =
def vee([],[1) = []
def Vee(x:xs,y:ys) = max(x,y):Vee(xs,ys)
Vee(cl,c2)
stop

Claude Jard () keynote — GPL2012

June 22, 2012

31/ 42

Soft contracts

QoS contracts cannot rely on hard bounds

400

No. of occurences
N
o
o

501
00 1 1.5 2 2.5 3
Delays %10

» Why not a soft bound, covering 95% of the cases?
» Unfortunately, such contracts do not compose
» ldea: a contract is a probability distribution

Claude Jard () keynote — GPL2012 June 22, 2012 32/ 42

Soft contracts

Probabilistic contracts

» The contract consists of a probability distribution
» Probas compose well:

» use Max-Plus probabilistic algebra if the control is deterministic
» otherwise run Monte-Carlo simulations

» QoS distributions can result

» from contracts
» from measurements

Claude Jard () keynote — GPL2012 June 22, 2012

33/ 42

Soft contracts

Probabilistic contracts in practice

400

T T T

To make it practical, we
can define probabilistic
contracts by specifying
only a finite set of
quantiles

150 (expressible in WSLA)

No. of occurences
N
o
o

100

50}

0 0.5 1 1.5 2 25 3
Delays % 10°

Claude Jard () keynote — GPL2012 June 22, 2012 34 /42

Monitoring

Statistical monitoring

» The specified contract F(x) = Pr(§ < x) (probability density)
» A distribution G(x) breaching the contract, meaning that

» —(G >s F), where >5 denotes stochastic dominance
(vx, G(x) > F(x))

> G is unknown: it is observed. How to perform on-line detection of the
contract violation?

Claude Jard () keynote — GPL2012 June 22, 2012 35 /42

Monitoring

On-line detection

> Actual test running with t: supx[F(x) — Gpe,eqn(X)] = A
> Gpt,t4-n(x) empirical distribution function based on [t, t + N]

znz ?(\: need?]?\alibration Vw Ml H %rﬂm ﬁﬂ%
OUO(;) / l{ I MU‘ M‘U W ﬂ“%"r M‘-ﬂﬂ ‘(‘IWﬂm’k ““ Lf""".""
el W TV k {h}]

L L L L L I L L
100 200 300 400 500 600 700 800 S00 1000

» Calibration is performed by bootstrapping:

1. Build large training data set (Monte-Carlo simulation of contract
distribution)

2. Resample it many times by selecting N—size trials

3. Tune X so that 95% of trials are accepted

Claude Jard () keynote — GPL2012 June 22, 2012 36 / 42

Conclusion

Conclusion

Web services orchestrations or choreographies are a world of
contracts

» SLA: function & QoS jointly

» The paradigm of contracts (composition, monitoring, reconfiguration)
» Novel issues

» Function: workflow & data
» QoS: monotonicity
» QOoS: soft contracts

Claude Jard () keynote — GPL2012 June 22, 2012 37 /42

Conclusion

Conclusion

We have proposed a comprehensive approach
QoS algebra
Probabilistic soft contracts

v

Contract composition

Statistical contract monitoring

vV v v Y

Reconfiguration?

A mix of techniques
» Formal concurrent models for orchestrations (ORC, Petri nets)
» Monte-Carlo simulation

» Bootstrap methods from statistics

Claude Jard () keynote — GPL2012 June 22, 2012 38 /42

Conclusion

Thank you

Questions?

—

Timeout Timeout

mu;

“T-9
yes

§

0

| Answer " Answer+

Please
Repeat

Colleagues

n
Ask

Ask more
Colleagues

min

Tt

i

P I

Response

Claude Jard () keynote — GPL2012

min

June 22, 2012

39 / 42

Conclusion

References |

[§ Albert Benveniste, Claude Jard, Ajay Kattepur, Sidney Rosario, and
John A. Thywissen.

Qos-aware management of monotonic service orchestrations.
Under submission, 2012.

[@ Sidney Rosario, Albert Benveniste, and Claude Jard.
Flexible probabilistic gos management of orchestrations.
International Journal of Web Services Research, 2, 2010.

[@ Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard.
Probabilistic qos and soft contracts for transaction-based web services
orchestrations.

IEEE Transactions on Services Computing, 1(4):187-200, 2008.

Claude Jard () keynote — GPL2012 June 22, 2012 40 / 42

Conclusion

References |l

[@ Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and
Claude Jard.
Pairwise testing of dynamic composite services.
In 6th international symposium on Software engineering for adaptive
and self-managing systems (SEAMS), SEAMS 11, pages 138-147,
New York, NY, USA, 2011. ACM.

3 Ajay Kattepur.
Importance sampling of probabilistic contracts in web services.

In 9th International Conference on Service-Oriented Computing
(ICSOC), pages 557-565. Springer, 2011.

[@ Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and
Claude Jard.

Variability modeling and qos analysis of web services orchestrations.
In ICWS, pages 99-106. IEEE Computer Society, 2010.

Claude Jard () keynote — GPL2012 June 22, 2012 41 / 42

Conclusion

References 1l

[@ Sidney Rosario, Albert Benveniste, and Claude Jard.
Monitoring probabilistic slas in web service orchestrations.
In IFIP/IEEE Intern. Symposium on Integrated Network Management,
Mini-conference. |EEE, June 2009.

@ Sidney Rosario, Albert Benveniste, and Claude Jard.
Probabilistic qos management of transaction based web services
orchestrations.

In IEEE 7th International Conference on Web Services (ICWS 2009).
[EEE, July 2009.

Claude Jard () keynote — GPL2012 June 22, 2012 42 / 42

	Introduction
	Monotonicity in QoS
	QoS computation
	Implementation in ORC
	Soft contracts
	Monitoring
	Conclusion

