
Modèles et Outils pour la

Vérification Cryptographique

Cédric Fournet

Microsoft Research & MSR-INRIA
Cambridge Orsay

Modèles et Outils pour la

Vérification Cryptographique

1. Vérifier les protocoles & programmes cryptographiques

2. F7: Un outil de vérification pour F# + types dépendents

3. Vérification symbolique d’un petit protocole

4. Application: CardSpace

5. Vérification calculatoire

6. Demo: Distributed Key Manager

http://research.microsoft.com/~fournet

http://msr-inria.inria.fr/projects/sec

Verifying Protocol

Implementations

Cryptographic protocols (still) go wrong

• Design & implementation errors often lead to
serious security vulnerabilities: SAML, OpenSSL, ASP.NET

• Traditional crypto models miss most details

• Production code and
design specs differ

We verify security on production code

Goal: Verify production code
relying on Cryptography

• Communications Protocol (IPSEC, TLS)

• Cryptographic libraries (XML security, WS* standards, TCG)

• Security Components
(InfoCard, DKM, TPM)

We verify security on production code

Symbolic vs Computational Cryptography

• Two verification approaches have been successfully
applied to protocols and programs that use cryptography:

 Symbolic approach (Needham-Schroeder, Dolev-Yao, ... late 70’s)

– Structural view of protocols, using formal languages and methods

– Compositional, automated verification tools, scales to large systems

– Too abstract?

 Computational approach (Yao, Goldwasser, Micali, Rivest, ... early 80’s)

– More concrete, algorithmic view; more widely accepted

– Adversaries range over probabilistic Turing machines
Cryptographic materials range over bitstrings

– Delicate (informal) game-based reduction proofs; poor scalability

• Can we get the best of both worlds? Much ongoing work on
computational soundness for symbolic cryptography

• Can we verify real-world protocols?

Specs, Code, and Formal Tools

TLS Kerberos

WS-Security
IPsec

SSH

Protocol Standards

Protocol Implementations and Applications

C/C++
Java

ML, F#

C#

Ruby

ProVerif (’01)

Casper

Cryptyc

AVISPA

Computational
Analyses

CryptoVerif (‘06)
EasyCrypt (‘11)
F7 (’11)

Hand Proofs
 NRL

Athena

Scyther

Securify

F7 (’08) F* (‘11)

General Verification

SMT Solvers

Theorem
Provers

Model
Checkers

Symbolic Analyses

Models vs implementations

• Protocol specifications remain largely informal

– They focus on message formats and interoperability,
not on local enforcement of security properties

• Models are short, abstract, hand-written

– They ignore large functional parts of implementations

– Their formulation is driven by verification techniques

– It is easy to write models that are safe but dysfunctional
(testing & debugging is difficult)

• Specs, models, and implementations drift apart…

– Even informal synchronization involves painful code reviews

– How to keep track of implementation changes?

From code to model

• Our approach:

– We automatically extract models from protocol code

– We develop models as executable code too
(reference implementations)

• Executable code is more detailed than models

– Some functional aspects can be ignored for security

– Model extraction can safely erase those aspects

• Executable code has better tool support

– Types, compilers, debuggers, libraries, testing, verification tools

Verifying Protocol Code (not just specs)

Applications

 Crypto, Net
 Concrete Libraries

 Crypto, Net
 Symbolic Libraries

Interoperability Testing

 Compile

Network

 Compile

Other
Implementations

Symbolic
Debugging

Run Run No Attack

Verify
Diverges

Attack

Symbolic
Verification

Proof

Verify
No Proof

Computational
Verification

Protocol Code

Security
Goals

Computational
Crypto Model

One Source
Many Tasks

F7:
automated program verification

using refinement types

Programming Language: F#

• “Combining the strong typing,
scripting and productivity of ML
with the efficiency, stability,
libraries, cross-language
working and tools of .NET.”

• Interop with production code

• Great for research & prototyping

• Clean strongly-typed semantics

– Modular programming based on strong interfaces

– Algebraic data types with pattern matching
useful for cryptography & message formats

TLS in F#

We implemented a subset of TLS (10 kLOC)

– Supports SSL3.0, TLS1.0, TLS1.1
with session resumption

– Supports any ciphersuite using
DES, AES, RC4, SHA1, MD5

We tested it on a few basic scenarios, e.g.

1. An HTTPS client to retrieves pages
(interop with IIS, Apache, and F# servers)

2. An HTTPS server to serve pages
(interop with IE, Firefox, Opera, and F# client)

We verified our implementation (symbolically & computationally)

Basis for Verification: Refinement types

Specifications: Assume and Assert

• Suppose there is a global set of formulas, the log

• To evaluate assume C, add C to the log, and return ().

• To evaluate assert C, return ().
– If C logically follows from the logged formulas,

we say the assertion succeeds;
otherwise, we say the assertion fails.

– The log is only for specification purposes;
it does not affect execution.

• Our use of first-order logic generalizes
conventional program assertions
– Such predicates usefully represent security-related concepts

like roles, permissions, events, compromises

Example: access control for files

• Untrusted code may
call a trusted library

• Trusted code expresses
security policy with
assumes and asserts

• Each policy violation
causes an assertion
failure

• We statically prevent
any assertion failures
by typing

• Security policies often
stated in terms of
dynamic events such
as role activations or
data checks

• We mark such events
by adding formulas to
the log with assume

Logging dynamic events

Access control with refinement types

• Preconditions express access control requirements

• Postconditions express results of validation

• We typecheck partially trusted code to guarantee that
all preconditions (and hence all asserts) hold at runtime

F7: refinement typechecking for F#

• We write extended interfaces

– We typecheck implementations

– We generate .fsi interfaces
by erasure from .fs7

• We do some type inference

– Plain F# types as usual

– Refinements require annotations

• We call Z3, an SMT prover,
on each proof obligation

• We can also generate coq
proof obligations

– Selected interactive proofs

– Theorems assumed for
typechecking & Z3

file.fs7

file.fs

file.fsi

Type
(F7)

Prove
(Z3)

Compile
(F#)

Erase
types

crypto.fs7

pi.fs7

file.v

Prove
(coq)

• An assembly
of standard
components

• For example,
declares a type of strings for filename with the read access right

Refinement types

Safety by typing

Rules for assume and assert

Rules for refinements

We can refine any type
with any formula
that follows from E

We can assume
any formula

We can assert
any formula that
follows from E

Logical Invariants for

Symbolic Cryptography
Our crypto libraries for F7 v2.0

Symbolic Method:

Invariants for Cryptographic Structures

Sample protocol: an authenticated RPC

Client
Service

request HMAC(key,request)

response HMAC(key,request,response)

Informal Description

Is This Protocol Secure?

Logical Specification

F# Implementation

Connecting to localhost:8080
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080
Received Request 2 + 2?
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes)
Received Response 4

Test

Modelling Opponents as F# Programs

Sample Security Theorem

Security proof (typechecking)

Security proof: message formats

Security proof: protocol invariants

SEMANTIC SAFETY BY TYPING
Symbolic Crypto Models

Syntactic vs semantic safety

• Two variants of run-time safety:
“all asserted formulas follow from previously-assumed formulas”
– Either by deducibility, enforced by typing (the typing environment

contains less assumptions than those that will be present at run-time)
– Or in interpretations satisfying all assumptions

• We distinguish different kinds of logical properties
– Inductive definitions

(Horn clauses)
– Logical theorems

additional properties
that hold in our model

– Operational theorems
additional properties
that hold at run-time

• We are interested in least models for inductive definitions (not all models)
• After proving our theorems (by hand, or using other tools e.g. coq),

we can assume them so that they can be used for typechecking

Refined Modules

• Defining cryptographic structures and proving theorems is hard...
Can we do it once for all?

• A “refined module” is a package that provides

– An F7 interface, including inductive definitions & theorems

– A well-typed implementation

 Theorem: refined modules with disjoint supports
can be composed into semantically safe protocols

• We show that our crypto libraries are refined modules (defining e.g. Pub)

• To verify a protocol that use them,
it suffices to show that the protocol itself is a refined module,
assuming all the definitions and theorems of the libraries.

Some Refined Modules

• Crypto: a library for basic cryptographic operations
– Public-key encryption and signing (RSA-based)

– Symmetric key encryption and MACs

– Key derivation from seed + nonce, from passwords

– Certificates (x.509)

• Principals: a library for managing keys, associating
keys with principals, and modelling compromise
– Between Crypto and protocol code,

defining user predicates on behalf of protocol code

– Higher-level interface to cryptography

– Principals are units of compromise (not individual keys)

• XML: a library for XML formats and WS* security

Cryptographic Patterns

CardSpace
& Web Services Security

 Verification Case Study

InfoCard:
Information Card Profile

,
Client C

(Windows Cardspace)

3. Get IP Policy

5. Submit (T)

card

Relying Party (RP)
(Web Server)

Policy

Identity Provider (IP)
(Security Token Server)

Secret
card
data

Policy

Client Application (A)
(Web Browser)

4. Get Issued Token (T)
 with card data

1. Request

6. Response

2. Here is RP’s Policy (go to IP)
Selects card
and
provides
password

Protocol
Narration
(Managed
Card)

InfoCard: modular reference implementation

Verifying CardSpace

• We reviewed the protocol design

• We built a modular reference implementation
– For the three CardSpace roles: client, relying party, identity provider

– For the protocol stack: WS-Security standards & XML formats

– For the underlying cryptographic primitives

Evaluation
relative to FS2PV/ProVerif

Refinement typechecking is an effective, scalable
verification technique for security protocols

Computational Soundness for

Cryptographic Typechecking

What about standard
crypto assumptions?
(concrete, probabilistic, poly-time)

Cryptographic primitives are partially specified

• Symbolic models reason about fully-specified crypto primitives
– Same rewrite rules apply for the attacker as for the protocol

– Each crypto primitive yields distinct symbolic terms

• Computational models reason about partially-specified primitives
(the less specific, the better)
– Positive assumptions: what the protocol needs to run as intended

e.g. successful decryption when using matching keys

– Negative assumptions: what the adversary cannot do
e.g. cannot distinguish between encryptions of two different plaintexts

• Security proofs apply parametrically,
for any concrete primitives that meet these assumptions

• Typed interfaces naturally capture partial specifications
– Many “computational crypto” type systems already exist,

sometimes easily adapted from “symbolic crypto” type systems

Computational soundness for F7

 We rely on our existing F7 typechecker and code base

1. We adapt our language for probabilistic polynomial-time assumptions

2. We type protocols and applications against
refined typed interfaces for cryptography (automatically)

2. We relate several implementations of our interface (once for all)

– An ideal, well-typed functionality (much as symbolic libraries)

– A concrete implementation (not typable in F7)

– Intermediate implementations, to show computational soundness
by applying “code-based game-rewriting” onto F# code

HMAC & Int-CMA

Sample computational soundness
for keyed hash functions

plain F#
interface

Sample computational soundness:

Keyed cryptographic hashes

concrete F#
implementation

(calling .NET)

“ideal” F7
interface

concrete F#
implementation

(calling .NET)

Sample computational soundness:

Keyed cryptographic hashes

“All verified
messages

are authentic”

Can’t be true
(many collisions)

Cryptographic assumption: resistance against

Adaptive Chosen-Message existential forgery Attacks

The opponent
can forge a signature

only with negligible probability

MACs: interfaces and implementations

CMA.fs7

Hmac.fsi

RPC Hmac

CMA

LINK

a plain F#
interface

some sample
protocol

some concrete
implementation

MACs: interfaces and implementations

RCP.fs7

CMA.fs7

Hmac.fs7

Hmac.fsi

RPC Hmac

CMA

LINK

a plain F#
interface

 … and its refinements

some sample
protocol

cannot
typecheck in F7!

some concrete
implementation

MACs: interfaces and implementations

RCP.fs7

CMA.fs7

Hmacc.fs7 Hmac.fs7

Hmac.fsi

RPC Hmac

CMA

LINK

a plain F#
interface

 … and its refinements

some sample
protocol

some concrete
implementation

MACs: interfaces and implementations

some concrete
implementation

RCP.fs7 Hmacc.fs7 Hmac.fs7

Hmac.fsi

RPC Hmac

Cma.fs7

a plain F#
interface

 … and its refinements

some sample
protocol

LINK CMA LINK

some error
correcting wrapper

MACs: interfaces and implementations

is safe too, with
overwhelming
probability

RPC HMAC

is always safe
(by typing) CMA

is indistinguishable from

RPC HMAC

PPT
Adversary

PPT
Adversary

Verifying DKM,
a fresh data protection API

 Case Study & Demo

 A new security API for securing data at rest
between multiple machines and multiple users/service accounts

 DKM unburdens developers from many common tasks.
– Key management. The caller does not have to worry

about cryptography. The DKM library figures out which
key to use based on the specified group.

– Automated key update.

– Crypto agility.
DKM supports flexible policies for selecting crypto algorithms

 DKM is largely deployed in Microsoft datacenters

 We wrote together auxiliary reference code (aka specification)

 We found and fixed serious flaws (early in the process)

 We verified DKM once fixed (verification time: 17 s)

DKM Encrypted Email (Normal)

Internet

Cedric’s

Keys & Policies

secure repository

large untrusted store

Mailboxes

Cedric’s DKM
encrypted

mail
EXCH-EUROPE

DKM.dll

EXCH-REDMOND

DKM.dll

Mira’s
Keys & Policies M

Mira’s DKM
encrypted
mailbox

Mira

Mira’s DKM
encrypted

mail

M

DKM Encrypted Email (Attack)

Internet

Cedric’s

Keys & Policies

secure repository

large untrusted store

Mailboxes

Cedric’s DKM
encrypted

mail

EXCH-REDMOND

DKM.dll

Mira’s
Keys & Policies M

Mira’s DKM
encrypted
mailbox

Cedric

Mira’s DKM
encrypted

mail

M

Mira’s DKM
encrypted

mail

Verifying DKM

time ../../../../../../../inria/lang-sec/msrc/cvk/bin/f7.exe -nokindcheck --define f7

–pervasives ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pervasives.fs7

–tuples ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/tuples.fs7

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pi.fs7

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/list.fs7

db.fs7 var.fs7 CryptoModel.fs7 Acls.fs7 KeyPolicyModel.fs7 RepositoryModel.fs7 AuthEncModel.fs7

DKM.fs7 DKM.fs -scripts DKM | tee DKM.tc7 | egrep --color "ERROR|WARNING"

ERROR: failed type checking val DKM.DkmUnprotect

0m9.863s

 65590 2011-02-10 11:42 DKM.tc7

 111421 2011-02-10 11:42 DKM.smp

 8331 2011-02-10 11:41 DKM.fs

 2940 2011-01-12 14:26 DKM.fs7

Verifying DKM

time ../../../../../../../inria/lang-sec/msrc/cvk/bin/f7.exe -nokindcheck --define f7

–pervasives ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pervasives.fs7

–tuples ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/tuples.fs7

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pi.fs7

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/list.fs7

db.fs7 var.fs7 CryptoModel.fs7 Acls.fs7 KeyPolicyModel.fs7 RepositoryModel.fs7 AuthEncModel.fs7

DKM.fs7 DKM.fs -scripts DKM | tee DKM.tc7 | egrep --color "ERROR|WARNING"

0m8.058s

 819 2011-02-10 11:42 DKM.tc7

 107561 2011-02-10 11:42 DKM.smp

 8329 2011-02-10 11:42 DKM.fs

 2940 2011-01-12 14:26 DKM.fs7

The DKM Codebase

Crypto Agility?

Encrypt(Policy, key)

– Legacy systems:
data must be accessible in 10+ years
even if protected by weak algorithms!

– Plug-and-play cryptography:
algorithms get broken & replaced

• Encrypt: DES; 3DES; AES-128; AES-256 …

• Hash: MD5; SHA-1; SHA-256; SHA-512; SHA3 …

Production code
relying on crypto
can be verified

• New tasks:

– Write reference code in F#

– When using non-standard crypto,
adapt F7 verification libraries

• Verification is fast & automated

– Part of the build/test process

language LOCs

C# ~ 20,000

F# 1,447

F7 855

task time

Build
+ unit tests

3 m

Verify (F7) 17 s

Summary

• We verify crypto protocol implementations

by refinement typechecking

• Verification is modular

• We use abstract types and refinements to control the usage of

cryptography

• Except for the crypto libraries, proofs are automated & fast

• Applied to full-fledged implementations

of industrial standards and protocols

• This talk: integrity properties

• Active adversaries range over programs with access to specially-crafted

interfaces that account for potential partial compromise

• Verification is cryptographically sound, both symbolically and

computationally

• Omitted: secrecy properties

• Our approach and libraries are language-independent (in principle)

• So far we use mostly F# & F7

Questions?

• We verify crypto protocol implementations

by refinement typechecking

• Verification is modular

• We use abstract types and refinements to control the usage of

cryptography

• Except for the crypto libraries, proofs are automated & fast

• Applied to full-fledged implementations

of industrial standards and protocols

• This talk: integrity properties

• Active adversaries range over programs with access to specially-crafted

interfaces that account for potential partial compromise

• Verification is cryptographically sound, both symbolically and

computationally

• Omitted: secrecy properties

• Our approach and libraries are language-independent (in principle)

• So far we use mostly F# & F7

