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Verifying Protocol 

Implementations 



Cryptographic protocols (still) go wrong 

• Design & implementation errors often lead to 
serious security vulnerabilities: SAML, OpenSSL, ASP.NET 

• Traditional crypto models miss most details 

• Production code and 
design specs differ 

We verify security on production code 



Goal: Verify production code 
relying on Cryptography 

• Communications Protocol (IPSEC, TLS) 

• Cryptographic libraries (XML security, WS* standards, TCG) 

• Security Components 
(InfoCard, DKM, TPM) 

 

We verify security on production code 



Symbolic vs Computational Cryptography 

• Two verification approaches have been successfully 
applied to protocols and programs that use cryptography: 
 

 Symbolic approach (Needham-Schroeder, Dolev-Yao, ... late 70’s) 

– Structural view of protocols, using formal languages and methods 

– Compositional, automated verification tools, scales to large systems 

– Too abstract? 

 Computational approach (Yao, Goldwasser, Micali, Rivest, ... early 80’s) 

– More concrete, algorithmic view; more widely accepted 

– Adversaries range over probabilistic Turing machines 
Cryptographic materials range over bitstrings 

– Delicate (informal) game-based reduction proofs; poor scalability 
 

• Can we get the best of both worlds? Much ongoing work on 
computational soundness for symbolic cryptography 

• Can we verify real-world protocols? 
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Models vs implementations 

• Protocol specifications remain largely informal 

– They focus on message formats and interoperability, 
not on local enforcement of security properties 

 

• Models are short, abstract, hand-written 

– They ignore large functional parts of implementations 

– Their formulation is driven by verification techniques 

– It is easy to write models that are safe but dysfunctional 
(testing & debugging is difficult) 

 

• Specs, models, and implementations drift apart… 

– Even informal synchronization involves painful code reviews 

– How to keep track of implementation changes? 



From code to model 

• Our approach: 

– We automatically extract models from protocol code 

– We develop models as executable code too 
(reference implementations) 

 

 

• Executable code is more detailed than models 

– Some functional aspects can be ignored for security 

– Model extraction can safely erase those aspects 

• Executable code has better tool support 

– Types, compilers, debuggers, libraries, testing, verification tools 

 



Verifying Protocol Code (not just specs) 
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F7: 
automated program verification 

using refinement types 



Programming Language: F# 

• “Combining the strong typing, 
scripting and productivity of ML 
with the efficiency, stability, 
libraries, cross-language 
working and tools of .NET.” 

 

• Interop with production code 

• Great for research & prototyping 

• Clean strongly-typed semantics 

– Modular programming based on strong interfaces  

– Algebraic data types with pattern matching 
useful for cryptography & message formats 



TLS in F# 

We implemented a subset of TLS (10 kLOC) 

– Supports SSL3.0, TLS1.0, TLS1.1 
with session resumption 

– Supports any ciphersuite using 
DES, AES, RC4, SHA1, MD5 

 

We tested it on a few basic scenarios, e.g. 

1. An HTTPS client to retrieves pages 
(interop with IIS, Apache, and F# servers) 

2. An HTTPS server to serve pages 
(interop with IE, Firefox, Opera, and F# client) 
 

We verified our implementation (symbolically & computationally) 
 



Basis for Verification: Refinement types 



Specifications: Assume and Assert 

• Suppose there is a global set of formulas, the log 

• To evaluate assume C, add C to the log, and return (). 

• To evaluate assert C, return (). 
– If C logically follows from the logged formulas, 

we say the assertion succeeds; 
otherwise, we say the assertion fails.   

– The log is only for specification purposes; 
it does not affect execution. 
 

• Our use of first-order logic generalizes 
conventional program assertions 
– Such predicates usefully represent security-related concepts 

like roles, permissions, events, compromises 



Example: access control for files 

• Untrusted code may 
call a trusted library 

• Trusted code expresses 
security policy with 
assumes and asserts 

 

 

 

• Each policy violation 
causes an assertion 
failure 

• We statically prevent 
any assertion failures 
by typing 



• Security policies often 
stated in terms of 
dynamic events such 
as role activations or 
data checks 

 

• We mark such events 
by adding formulas to 
the log with assume 

 

Logging dynamic events  



Access control with refinement types  

• Preconditions express access control requirements 

• Postconditions express results of validation 

• We typecheck partially trusted code to guarantee that 
all preconditions (and hence all asserts) hold at runtime 

 

 

 



F7: refinement typechecking for F# 

• We write extended interfaces 

– We typecheck implementations 

– We generate .fsi interfaces 
by erasure from .fs7 

 

• We do some type inference 

– Plain F# types as usual 

– Refinements require annotations 
 

• We call Z3, an SMT prover,  
on each proof obligation 
 

• We can also generate coq 
proof obligations  

– Selected interactive proofs 

– Theorems assumed for 
typechecking & Z3 

file.fs7 

file.fs 

file.fsi 
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Compile 
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Erase  
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• An assembly 
of standard 
components 

 

 

 

 

 

 

• For example,  
declares a type of strings for filename with the read access right 

 

  

Refinement types 



Safety by typing 



Rules for assume and assert 

Rules for refinements 

We can refine any type 
with  any formula 
that follows from E 

We can assume 
any formula 

We can assert  
any formula that  
follows from E  



Logical Invariants for 

Symbolic Cryptography 
Our crypto libraries for F7 v2.0 



Symbolic Method: 

Invariants for Cryptographic Structures 



Sample protocol: an authenticated RPC 

Client  
Service 

request HMAC(key,request) 

response HMAC(key,request,response) 



Informal Description 



Is This Protocol Secure? 



Logical Specification 



F# Implementation 



Connecting to localhost:8080 
Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes) 
Listening at ::1:8080 
Received Request 2 + 2? 
Sending {AQA0NccjcuL/WOaYS0GGtOtPm...} (23 bytes) 
Received Response 4 

Test 



Modelling Opponents as F# Programs 



Sample Security Theorem 



Security proof (typechecking) 



Security proof: message formats 



Security proof: protocol invariants 



SEMANTIC SAFETY BY TYPING 
Symbolic Crypto Models 



Syntactic vs semantic safety 

• Two variants of run-time safety: 
“all asserted formulas follow from previously-assumed formulas” 
– Either by deducibility, enforced by typing (the typing environment 

contains less assumptions than those that will be present at run-time) 
– Or in interpretations satisfying all assumptions  

 

• We distinguish different kinds of logical properties 
– Inductive definitions 

(Horn clauses)  
– Logical theorems 

additional properties  
that hold in our model 

– Operational theorems 
additional properties 
that hold at run-time 

 

• We are interested in least models for inductive definitions (not all models)  
• After proving our theorems (by hand, or using other tools e.g. coq), 

we can assume them so that they can be used for typechecking 



Refined Modules 

• Defining cryptographic structures and proving theorems is hard... 
Can we do it once for all? 

• A “refined module” is a package that provides 

– An F7 interface, including inductive definitions & theorems 

– A well-typed implementation  
 

 Theorem: refined modules with disjoint supports 
can be composed into semantically safe protocols 
 

• We show that our crypto libraries are refined modules (defining e.g. Pub) 

• To verify a protocol that use them, 
it suffices to show that the protocol itself is a refined module, 
assuming all the definitions and theorems of the libraries. 



Some Refined Modules 

• Crypto: a library for basic cryptographic operations 
– Public-key encryption and signing (RSA-based) 

– Symmetric key encryption and MACs  

– Key derivation from seed + nonce,  from passwords 

– Certificates (x.509) 
 

• Principals: a library for managing keys, associating 
keys with principals, and modelling compromise 
– Between Crypto and protocol code, 

defining user predicates on behalf of protocol code 

– Higher-level interface to cryptography 

– Principals are units of compromise (not individual keys) 
 

• XML: a library for XML formats and WS* security 
 



Cryptographic Patterns 



CardSpace 
& Web Services Security 

 Verification Case Study 



InfoCard: 
Information Card Profile 
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InfoCard: modular reference implementation 



Verifying CardSpace 

• We reviewed the protocol design 

• We built a modular reference implementation  
– For the three CardSpace roles: client, relying party, identity provider 

– For the protocol stack: WS-Security standards & XML formats 

– For the underlying cryptographic primitives 



Evaluation 
relative to FS2PV/ProVerif 

Refinement typechecking is an effective, scalable 
verification technique for security protocols 



Computational Soundness for 

Cryptographic Typechecking 

What about standard 
crypto assumptions? 
(concrete, probabilistic, poly-time) 
 



Cryptographic primitives are partially specified 

• Symbolic models reason about fully-specified crypto primitives 
– Same rewrite rules apply for the attacker as for the protocol 

– Each crypto primitive yields distinct symbolic terms 
 

• Computational models reason about partially-specified primitives 
(the less specific, the better) 
– Positive assumptions: what the protocol needs to run as intended 

e.g. successful decryption when using matching keys 

– Negative assumptions: what the adversary cannot do 
e.g.  cannot distinguish between encryptions of two different plaintexts 

 

• Security proofs apply parametrically, 
for any concrete primitives that meet these assumptions 
 

• Typed interfaces naturally capture partial specifications 
– Many “computational crypto” type systems already exist,  

sometimes easily adapted from “symbolic crypto” type systems 



Computational soundness for F7 

  We rely on our existing F7 typechecker and code base  

 

1. We adapt our language for probabilistic polynomial-time assumptions 

2. We type protocols and applications against 
refined typed interfaces for cryptography (automatically) 

 

2. We relate several implementations of our interface (once for all) 

– An ideal, well-typed functionality (much as symbolic libraries) 

– A concrete implementation (not typable in F7) 

– Intermediate implementations, to show computational soundness 
by applying “code-based game-rewriting” onto F# code 

 

  



HMAC & Int-CMA 

Sample computational soundness 
for keyed hash functions 



plain F# 
interface 

Sample computational soundness: 

Keyed cryptographic hashes  

concrete F# 
implementation 

(calling .NET) 



“ideal” F7 
interface 

concrete F# 
implementation 

(calling .NET) 

Sample computational soundness: 

Keyed cryptographic hashes  

“All verified 
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Can’t be true 
(many collisions) 



Cryptographic assumption:  resistance against 

Adaptive Chosen-Message existential forgery Attacks 

The opponent  
can forge a signature 

only with negligible probability 



MACs: interfaces and implementations 

 

 

CMA.fs7 

Hmac.fsi 

RPC Hmac 

CMA 

LINK 

a plain F#  
interface 

 

some sample 
protocol 

some concrete 
implementation 



MACs: interfaces and implementations 
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  … and its refinements 
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MACs: interfaces and implementations 
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MACs: interfaces and implementations 

some concrete 
implementation 
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             … and its refinements 

some sample 
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LINK CMA LINK 
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MACs: interfaces and implementations 

is safe too, with 
overwhelming 
probability 
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Verifying DKM, 
a fresh data protection API 

 Case Study & Demo 



 A new security API for securing data at rest 
between multiple machines and multiple users/service accounts 



 DKM unburdens developers from many common tasks. 
– Key management.  The caller does not have to worry 

about cryptography. The DKM library figures out which 
key to use based on the specified group.  

– Automated key update.  

– Crypto agility. 
DKM supports flexible policies for selecting crypto algorithms 

 



 DKM is largely deployed in Microsoft datacenters 

     We wrote together auxiliary reference code (aka specification) 

     We found and fixed serious flaws (early in the process) 

     We verified DKM once fixed (verification time: 17 s)   
 

 

 



DKM Encrypted Email (Normal) 

Internet 
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DKM Encrypted Email (Attack) 

Internet 

 

 
Cedric’s  

Keys & Policies 

secure repository 

large untrusted store 

Mailboxes 

Cedric’s DKM 
encrypted 

mail 

EXCH-REDMOND 

DKM.dll 

Mira’s 
Keys & Policies M 

Mira’s DKM 
encrypted 
mailbox 

Cedric 

Mira’s DKM 
encrypted 

mail 

M 

Mira’s DKM 
encrypted 

mail 



Verifying DKM 

time ../../../../../../../inria/lang-sec/msrc/cvk/bin/f7.exe -nokindcheck --define f7  

–pervasives ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pervasives.fs7 

–tuples ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/tuples.fs7 

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pi.fs7 

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/list.fs7 

db.fs7 var.fs7 CryptoModel.fs7 Acls.fs7 KeyPolicyModel.fs7 RepositoryModel.fs7 AuthEncModel.fs7 

DKM.fs7 DKM.fs -scripts DKM | tee DKM.tc7 | egrep --color "ERROR|WARNING" 

ERROR: failed type checking val DKM.DkmUnprotect 

 

0m9.863s 

 

  65590 2011-02-10 11:42 DKM.tc7 

 111421 2011-02-10 11:42 DKM.smp 

   8331 2011-02-10 11:41 DKM.fs 

   2940 2011-01-12 14:26 DKM.fs7 

 

 

 

 

Verifying DKM 

time ../../../../../../../inria/lang-sec/msrc/cvk/bin/f7.exe -nokindcheck --define f7  

–pervasives ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pervasives.fs7 

–tuples ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/tuples.fs7 

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pi.fs7 

../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/list.fs7 

db.fs7 var.fs7 CryptoModel.fs7 Acls.fs7 KeyPolicyModel.fs7 RepositoryModel.fs7 AuthEncModel.fs7 

DKM.fs7 DKM.fs -scripts DKM | tee DKM.tc7 | egrep --color "ERROR|WARNING" 

 

0m8.058s 

 

    819 2011-02-10 11:42 DKM.tc7 

 107561 2011-02-10 11:42 DKM.smp 

   8329 2011-02-10 11:42 DKM.fs 

   2940 2011-01-12 14:26 DKM.fs7 





The DKM Codebase 



Crypto Agility? 

Encrypt(Policy, key) 

– Legacy systems: 
data must be accessible in 10+ years 
even if protected by weak algorithms!   

– Plug-and-play cryptography: 
algorithms get broken & replaced 
 

• Encrypt:  DES; 3DES; AES-128; AES-256 …  

• Hash: MD5; SHA-1; SHA-256; SHA-512; SHA3 … 

 

 



Production code 
relying on crypto 
can be verified 

 

• New tasks: 

– Write reference code in F# 

– When using non-standard crypto, 
adapt F7 verification libraries 

 

• Verification is fast & automated 

– Part of the build/test process 

language  LOCs 

C# ~ 20,000 

F# 1,447 

F7 855 

task time 

Build  
+ unit tests 

3 m  

Verify (F7) 17 s 



Summary 

• We verify crypto protocol implementations 

by refinement typechecking  

• Verification is modular 

• We use abstract types and refinements to control the usage of 

cryptography 

• Except for the crypto libraries, proofs are automated & fast 

• Applied to full-fledged implementations 

of industrial standards and protocols 

• This talk: integrity properties 

• Active adversaries range over programs with access to specially-crafted 

interfaces that account for potential partial compromise 

• Verification is cryptographically sound, both symbolically and 

computationally 

• Omitted: secrecy properties 

• Our approach and libraries are language-independent (in principle) 

• So far we use mostly F# & F7  



Questions? 

• We verify crypto protocol implementations 

by refinement typechecking 

• Verification is modular 

• We use abstract types and refinements to control the usage of 

cryptography 

• Except for the crypto libraries, proofs are automated & fast 

• Applied to full-fledged implementations 

of industrial standards and protocols 

• This talk: integrity properties 

• Active adversaries range over programs with access to specially-crafted 

interfaces that account for potential partial compromise 

• Verification is cryptographically sound, both symbolically and 

computationally 

• Omitted: secrecy properties 

• Our approach and libraries are language-independent (in principle) 

• So far we use mostly F# & F7  


