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Verifying Protocol
Implementations



Cryptographic protocols (still) go wrong

Design & implementation errors often lead to
serious security vulnerabilities: SAML, OpenSSL, ASP.NET

Traditional crypto models miss most details

Production code and
design specs differ
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Goal: Verify production code
relying on Cryptography
« Communications Protocol (IPSEC, TLS)

e Cryptographic libraries (XML security, WS* standards, TCG)

* Security Components
(InfoCard, DKM, TPM)
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Symbolic vs Computational Cryptography

Two verification approaches have been successfully
applied to protocols and programs that use cryptography:

Symbolic approach (Needham-Schroeder, Dolev-Yao, ... late 70’s)

— Structural view of protocols, using formal languages and methods

— Compositional, automated verification tools, scales to large systems
— Too abstract?

Computational approach (Yao, Goldwasser, Micali, Rivest, ... early 80’s)

— More concrete, algorithmic view; more widely accepted

— Adversaries range over probabilistic Turing machines
Cryptographic materials range over bitstrings

— Delicate (informal) game-based reduction proofs; poor scalability

Can we get the best of both worlds? Much ongoing work on
computational soundness for symbolic cryptography

Can we verify real-world protocols?



Specs, Code, and Formal Tools
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General Verification Protocol Implementations and Applications



Models vs implementations

* Protocol specifications remain largely informal

— They focus on message formats and interoperability,
not on local enforcement of security properties

* Models are short, abstract, hand-written
— They ignore large functional parts of implementations
— Their formulation is driven by verification techniques

— It is easy to write models that are safe but dysfunctional
(testing & debugging is difficult)

e Specs, models, and implementations drift apart...
— Even informal synchronization involves painful code reviews

— How to keep track of implementation changes?



From code to model

* Qur approach:
— We automatically extract models from protocol code

— We develop models as executable code too
(reference implementations)

* Executable code is more detailed than models
— Some functional aspects can be ignored for security
— Model extraction can safely erase those aspects
e Executable code has better tool support
— Types, compilers, debuggers, libraries, testing, verification tools



Verifying Protocol Code (otjust specs

e
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F7/:

automated program verification
using refinement types



Programming Language: F#

“Combining the strong typing,
scripting and productivity of ML
with the efficiency, stability, - Microsoft
libraries, cross-language & 'Visual F#
working and tools of .NET.”

Interop with production code
Great for research & prototyping
Clean strongly-typed semantics

— Modular programming based on strong interfaces

— Algebraic data types with pattern matching
useful for cryptography & message formats
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We implemented a subset of TLS (10 kLOC) B
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We tested it on a few basic scenarios, e.g.

1.  An HTTPS client to retrieves pages
(interop with IS, Apache, and F# servers)

2. An HTTPS server to serve pages
(interop with IE, Firefox, Opera, and F# client)

We verified our implementation (symbolically & computationally)



Basis for Verification: Refinement types

A refinement type 1s a base type qualified with a logical formula;
the formula can express invariants, preconditions, postconditions, ...

Refinement types are types of the form X . T{C } where
— T 1s the base type,

— x refers to the result of the expression, and

— C 1s a logical formula

The values of this type are the values M of type T such that C{M /x} holds.
Examples:

—n:int{n > 0} is the type of positive integers
— k : bytes{ KeyAB(k,a,b)} is the type of byte arrays used as keys by a and b



Specifications: Assume and Assert

e Suppose there is a global set of formulas, the log
* To evaluate assume C, add C to the log, and return ().

* To evaluate assert C, return ().

— If C logically follows from the logged formulas,
we say the assertion succeeds;
otherwise, we say the assertion fails.

— The log is only for specification purposes;
it does not affect execution.

e Qur use of first-order logic generalizes
conventional program assertions

— Such predicates usefully represent security-related concepts
like roles, permissions, events, compromises



Example: access control for files

Untrusted code may type facts = CanRead of string | CanWrite of string
call a trusted library
let read file = assert(CanRead(file)); ...

Trusted code expresses
P let delete file = assert(CanWrite(file)); ...

security policy with

assumes and asserts letpwd="C:/etc/password"
lettmp="C:/temp/tempfile"

assume CanWrite(tmp)
assume Vx. CanWrite(x) — CanRead(x)

Each policy violation
causes an assertion
failure

We statically prevent
any assertion failures Typechecking failed at acls.fs(39,9)—(39,12)
by typing Error: Cannot establish formula CanRead(pwd)



Logging dynamic events

Security policies often
stated in terms of
dynamic events such
as role activations or
data checks

We mark such events
by adding formulas to
the log with assume

type facts = ... | PublicFile of string
let read file = assert(CanRead(file)); ...
let readme = "C: /public/README"

// Dynamic validation:

let publicfile f =
iff="C:/public/README" || ...
then assume (PublicFile(f))
else failwith "not a public file"

assume Vx. PublicFile(x) — CanRead(x)




Access control with refinement types

val read: file:string{ CanRead(file) } — string
val delete: file:string{ CanDelete(file)} — unit
val publicfile: file:string — unit{ PublicFile(file) }

Preconditions express access control requirements
Postconditions express results of validation

We typecheck partially trusted code to guarantee that
all preconditions (and hence all asserts) hold at runtime



F7: refinement typechecking for F# m

We write extended interfaces
— We typecheck implementations

— We generate .fsi interfaces file fs
by erasure from .fs7

We do some type inference
— Plain F# types as usual
— Refinements require annotations

We call Z3, an SMT prover,
on each proof obligation

file fsi

We can also generate coq
proof obligations

— Selected interactive proofs

— Theorems assumed for Compile
typechecking & Z3 (F#)



The Core Language (FPC):

Xy Y,
h:..=
Nl
inr
fold
M,N ::=
X

()

funx — A
(M,N)
h M
A,B .=
M
MN
M=N
letx=AinB
let (x,y) =M in A
match M with 4 x — A else B

variable
value constructor
left constructor of sum type
right constructor of sum type
constructor of 1so-recursive type
value
variable
unit
function (scope of x is A)
pair
construction
expression
value
application
syntactic equality
let (scope of x is B)
pair split (scope of x, yis A)
constructor match (scope of x is A)




Refinement types

e Anassembly H,T,U:= type

of standard o type variable

components unit unit type
[Ix:T.U dependent function type (scope of x i1s U)
Xx:T.U dependent pair type (scope of x 1s U)
T+U disjoint sum type
uo. T 1so-recursive type (scope of ot i1s T)
{x:T|C} refinement type (scope of x is C)

* Forexample, type filename = x:string{ CanRead(x)}
declares a type of strings for filename with the read access right



Safety by typing

ElFo E 1s syntactically well-formed
EFT in E, type T is syntactically well-formed
EFC formula C is derivable from £
EFT:v in E, type T has kind v € {pub, tnt}
EFT <:U in E, type T is a subtype of type U
EFA:T in E, expression A has type T
U= environment entry

a:vVv kinding

o <:a subtyping

a:T] name (of channel type)

x:T variable (of any type)
E:=uy,..., U, environment

An expression A 1s safe if and only if,
in all evaluations of A, all assertions succeed.

Theorem 1 (Safety by Typing) If & - A : T then A is safe.



Rules for refinements

We can refine any type
with any formula
that follows from E

E-M:T EFC{M/x}
EEM:{x:T|C}

EFT <:T' EFT<:T'" Ex:THC
Eb{x:T|C}<:T' EFT <:{x:T"|C}

Rules for assume and assert

EFo fufv(C) Cdom(E) EFC
E Fassume C: {_:unit| C} E + assert C : unit

We can assert
any formula that
follows from E

We can assume
any formula



Our crypto libraries for F7 v2.0



Symbolic Method:
Invariants for Cryptographic Structures

(1) We model cryptographic structures as
elements of a symbolic algebra, e.g. MAC(k,M).

(2) We use a “Public” predicate and events keep track of protocols.
— Pub(x) holds when the value x is known to the adversary.

— Request(a, b, x) holds when a intends to send message x to b.

(3) We define logical invariants on cryptographic structures.
— Bytes(x) holds when the value x appears in the protocol run.
— KeyAB(kgp,a,b) holds when key k&, is shared between a and b.
— After verifying the MAC (if no principals are compromised),
KeyAB(kyp,a,b) A Bytes(hash k,p x) => Request(a,b,x).
(4) We verily that the protocol code maintains these invariants (by typing)
— KeyAB(kyp,a,b) A Request(a,b,x) is a precondition for computing hash ky;, x



Sample protocol: an authenticated RPC

|
l.a—b: utf8s | (hmacshal kg, (request s))
2. b—a: utf8t| (hmacshal kyy, (response st))

—_—
o o o a

—  request | HMAC(key,request) > JE—

o o o a

—  |[€=— response | HMAC(key,request,response)

Client }
Service



Informal Description

I
l.a— b: utf8s| (hmacshal kg, (request s))
2. b—a: utf8t| (hmacshal kg, (response st))

We design and implement authenticated RPCs over a TCP connection.
We have two roles, client and server, and a population of principals,a b c ...

Our security goals:

e 1if b accepts a request s from a,
then a has indeed sent this request to b;

e if a accepts a response ¢ from b,
then b has indeed sent ¢ in response to a’s request.

We use message authentication codes (MACs) computed as keyed hashes,
such that each symmetric key k,, 1s associated with
(and known to) the pair of principals a and b.

There are multiple concurrent RPCs between any number of principals.
The adversary controls the network. Keys and principals may get compromised.



Is This Protocol Secure?

l.a— b: utf8s| (hmacshal kg, (request s))
2. b—a: utf8t| (hmacshal kg, (response st))

Security depends on the following:

(1) The function himacshal is cryptographically secure,
so that MACs cannot be forged without knowing their key.

(2) The principals a and b are not compromised,
otherwise the adversary may just use &, to form MAC:s.

(3) The functions request and response are injective and their ranges are disjoint;
otherwise the adversary may use intercepted MACs for other messages.

(4) The key kg, 1s a key shared between a and b,
used only for MACing requests from a to b and responses from b to a;
otherwise, if b also uses k,; for authenticating requests from b to a,
it would accept its own reflected messages as valid requests from a.



Logical Specification

I
l.a— b: utf8s| (hmacshal kg, (request s))
2. b—a: utf8t| (hmacshal kg, (response st))

Events record the main steps of the protocol:
— Request(a,b,s) before a sends message 1;
— Response(a,b,s,t) before b sends message 2;
— KeyAB(k,a,b) before issuing a key k associated with a and b;
— Bad(a) before leaking any key associated with a.

Authentication goals are stated in terms of events:
— RecvRequest(a,b,s) after b accepts message 1;
— RecvResponse(a,b,s,t) after a accepts message 2;

where the predicates RecvRequest and RecvResponse are defined by

Va,b,s. RecvRequest(a,b,s) < (Request(a,b,s) V Bad(a) V Bad(b))

Ya,b,s,t. RecvResponse(a,b,s,t) <
(Request(a,b,s) N\ Response(a,b,s,t)) V Bad(a) V Bad(b)



F# Implementation

I
l.a— b: utf8s| (hmacshal kg, (request s))
2. b—a: utf8t| (hmacshal kg, (response st))

Our F# implementation of the protocol:

let mkKeyAB a b = let k = hmac _keygen() in assume (KeyAB(k,a,b)); k
let request s = concat (utf8(str "Request")) (utf8 s)
let response s t = concat (utf8(str "Response™)) (concat (utf8 s) (utfS 1))

let client (a:str) (b:str) (k:keyab) (s:str) = let server(a:str) (b:str) (k:keyab) : unit =
assume (Request(a,b,s)); let ¢ = Net.listen p in
let ¢ = Net.connect p in let (pload,mac) = iconcat (Net.recv c) in
let mac = hmacshal k (request s) in let s = iutf8 pload in
Net.send c (concat (utf8 s) mac); hmacshal Verify k (request s) mac;
let (pload’ ,mac’) = iconcat (Net.recv c¢) in assert(RecvRequest(a,b,s));
let r = iutf8 pload’ in let 1 = service s in
hmacshal Verify k (response s t) mac’; assume (Response(a,b,s,t));
assert(RecvResponse(a,b,s,t)) let mac’ = hmacshal k (response s t) in

Net.send c (concat (utf8 t) mac’)



Test

I
l.a— b: utf8s| (hmacshal kg, (request s))
2. b—a: utf8t| (hmacshal kg, (response st))

The messages exchanged over TCP are:

Connecting to localhost:8080

Sending {BgAyICsgMj9mhJa7iDAcW3Rrk...} (28 bytes)
Listening at ::1:8080

Received Request 2 + 27

Sending {AQAONccjcuL/w0aYSOGGtotPm...} (23 bytes)
Received Response 4



Modelling Opponents as F# Programs

We program a protocol-specific interface for the opponent:

let setup (a:str) (b:str) =
let k = mkKeyAB a b in
(fun s —clienta b k s),
(fun _ — server a b k),
(fun _ — assume (Bad(a)); k),
(fun _ — assume (Bad(b)); k)

Opponent Interface (excerpts):

val send: conn — bytespub — unit
val recv: conn — bytespub

val imacshal : keypub — bytespub — bytespub
val hmacshal Verify : keypub — bytespub — bytespub — unit

val setup: strpub — strpub —
(strpub — unit) * (unit — unit) * (unit — keypub) * (unit — keypub)




Sample Security Theorem

An expression is semantically safe when
every executed assertion logically follows from previously-executed assumptions.

Let I;, be the opponent interface for our library.
Let Ig be the opponent interface for our protocol (the serup function).
Let X be composed of library and protocol code.

Theorem 1 (Authentication for the RPC Protocol)
For any opponent O, if I1,Ig = O : unit, then X|O]| is semantically safe.



Security proof (typechecking)

To apply the authentication theorem,
we typecheck our protocol code against the library interface.

For MAC:s, this interface is

Refinement Types for MACs in the Crypto library:
I

private val imac _keygen: unit — k:key{MKey(k)}
val hmacshal:
k:key —
b:bytes{ (MKey(k) AMACSays(k,b)) V (Pub(k) A Pub(b)) } —
hibytes{ IsMAC(h,k,b) A(Pub(b) = Pub(h)) }
val hmacshal Verify:
k:key{MKey(k) V Pub(k)} — b:bytes — h:bytes — unit{IsMAC(h.k,b)}

Vh,k,b. IsSMAC(hk,b) \Bytes(h) = MACSays(k,b) V Pub(k)




Security proof: message formats

Requested and Responded are (typechecked) postconditions of request and response.

Typechecking involves verifying that they are injective and have disjoint ranges.
(Verification is triggered by asserting the formulas below, so that Z3 proves them.)

Properties of the Formatting Functions request and response:

(request and response have disjoint ranges)

Yv,v',s,8°, 1. (Requested(v,s) N\ Responded(v’,s’,t’)) = (v #V’)
(request is injective)

Yv,v',s,s’. (Requested(v,s) N\ Requested(v’ ,s’) A\v=v') =(s=5")
(response 1s injective)

Yv,v,s,s' Lt .

(Responded(v,s,t) AResponded(v’,s’ ;') A\v=Vv')=(s=5 ANt=1t)
|

For typechecking the rest of the protocol, we use only these formulas:
the security of our protocol does not depend a specific format.



Security proof: protocol invariants

Formulas Assumed for Typechecking the RPC protocol:
1

(KeyAB MACSays)

Ya,b,k,m. KeyAB(k,a,b) = ( MACSays(k,m) <

( (ds. Requested(m,s) N\ Request(a,b,s)) V
(ds,t. Responded(m,s,t) N\ Response(a,b,s,t)) V
(Bad(a) V Bad(b))))

(KeyAB Injective)
Vk,ab,a’,b’. KeyAB(k,a,b) N\ KeyAB(k,a’,b’) = (a=a’) N\ (b=b")

(KeyAB Pub Bad)
Va,b,k. KeyAB(k,a,b) \ Pub(k) = Bad(a) V Bad(b)

(KeyAB MACSays) is a definition for the library predicate MACSays.
It states the intended usage of keys in this protocol.

(KeyAB Injective) is a theorem: each key 1s used by a single pair of principals.

(KeyAB Pub Bad) is a theorem: each key is secret until one of its owners i1s compromised.



Symbolic Crypto Models

SEMANTIC SAFETY BY TYPING



Syntactic vs semantic safety

e Two variants of run-time safety:
“all asserted formulas follow from previously-assumed formulas”

— Either by deducibility, enforced by typing (the typing environment
contains less assumptions than those that will be present at run-time)

— Orin interpretations satisfying all assumptions

* We distinguish different kinds of logical properties
— Inductive definitions

(Horn clauses) Vx,y. Pub(x) A\ Pub(y) = Pub(pair(x,y))
— Logical theorems
additional properties Vx,y. Pub(pair(x,y)) = Pub(x)

that hold in our model

— Operational theorems
aol?ditional properties Vk.a,b. PubKey(k,a) \ PubKey(k,b) =a = b

that hold at run-time

 We areinterested in least models for inductive definitions (not all models)

* After proving our theorems (by hand, or using other tools e.g. coq),
we can assume them so that they can be used for typechecking



Refined Modules

Defining cryptographic structures and proving theorems is hard...
Can we do it once for all?

A “refined module” is a package that provides
— An F7 interface, including inductive definitions & theorems
— A well-typed implementation

Theorem: refined modules with disjoint supports
can be composed into semantically safe protocols

We show that our crypto libraries are refined modules (defining e.g. Pub)

To verify a protocol that use them,
it suffices to show that the protocol itself is a refined module,
assuming all the definitions and theorems of the libraries.



Some Refined Modules

Crypto: a library for basic cryptographic operations
— Public-key encryption and signing (RSA-based)
— Symmetric key encryption and MACs
— Key derivation from seed + nonce, from passwords
— Certificates (x.509)

Principals: a library for managing keys, associating
keys with principals, and modelling compromise

— Between Crypto and protocol code,
defining user predicates on behalf of protocol code

— Higher-level interface to cryptography
— Principals are units of compromise (not individual keys)

XML: a library for XML formats and WS* security



Cryptographic Patterns

Patterns is a refined module that shows how to derive authenticated encryption, for
cach of the three standard composition methods for encryption and MACs.

Encrypt-then-MAC (as in IPSEC in tunnel mode):
1

a— b: e | hmacshal k), e where e = aes ki, t
|

MAC-then-Encrypt (as in SSL/TLS):

a — b: aes k) (t | hmacshal k) t)

MAC-and-Encrypt (as in SSH):
I

a— b: aes k!, t | hmacshal kl}y t |




CardSpace
& Web Services Security

Verification Case Study



InfoCard:
Information Card Profile

3. Get IP Policy

4. Get Issued Token (T)

with card data
Selects card

and
provides

2. Here is RP’s Policy (go to IP)

A Client C
password /' (Windows Cardspace)

¥

T e = 1. Request
N — > al AL L LI LI LI LI LI I LIl
. A = e e

6. Response

5. Submit (T)

Client Application (A)
\_ (Web Browser)  /

o)

card
data

Policy

Identity Provider (IP)
(Security Token Server)

~

Policy

Relying Party (RP)
(Web Server)




Initially,  C has: cardld, PK(kip), PK(krp): IP has: kip, PK(krp), Card(cardld, claimsy, pwdy 1p, kearaia); RP has: kgp, PK(kip)

C: Request (RP, M., ) C receives an application request

P r t I u: Select InfoCard (cardld, C, RP, pwdy; 1p, tvpesgp) User selects card and provides password
O O C O C: generate fresh ki, M1,M2, Nee Fresh session key, two nonces, and client entropy for token key
C —1P: let M, = RSAEnc(PK(kip), k) in Encrypt session key for TP
° let ky;; = PSHA1 (ky.m1) in Derive message signing key
let kppe = PSHAL(k,12) in Derive message encryption key
N a r ra t I O n let Mg, = RST(cardld, typesgp, RP, M) in Token request message body
let Myser = (U, pwdy) in User authentication token
let Myqc = HMACSHAL (Ksig, (Myst, Myser)) in Message signature

( IVI a n a g e d Request Token (M, 11,13, Token Request, with encrypted signatures, token and body
AESEnC(kem‘a Mmac) s AESEnc (kenc s Muser) »

AESEnc (kene, M)

C d IP: Issue Token (U, cardld, claimsy;, RP, display) IP issues token for U to use at RP
a r 1P : generate fresh N3, MNa, Nse, ks Fresh nonces, server entropy, token encryption key
IP — C: let kyjy = PSHA1(ky,1m3) in Derive message signing key
let kene = PSHAL(k1,74) in Derive message encryption key
let M;yixey = RSAEnc (PK(kgp), PSHAL(Nce, Mse)) in Compute token key from entropies, encrypt for RP
let ppid(_‘a.rdid,RP = H (keardia, RP) in Compute PPID using card master key, RP’s identity
let My, = Assertion(IP, M, ity claimsy,RP, ppid . g4 gp) In - SAML assertion with token key, claims, and PPID
let M;oksig = RSASHAL (kip, M0t in SAML assertion signed by IP
let M = RSAEnc(PK(kgp),k;) in Token encryption key, encrypted for RP
let Mypcror = (Mg, AESEnc (ky, SAML (M, My osig) ) ) in Encrypted issued token
let Mygtr = RSTR(M pirok » Mse) i Token response message body
let M. = HMACSHA1 (ksig;Mrsrr) in Message Signature
Token Response (N3, M4, AESEnc (kene, Minae ), AESENC (keye, Myt ) ) Token Response, with encrypted signature and body
U: Approve Token (display) User approves token
C: generate fresh k2, N5, Ne. M7 Fresh session key, three nonces
C — RP :let M, = RSAEnc(PK(kgp),kz) in Encrypt session key for RP
let ksig = PSHA1(k2,75) in Derive message signing key
let kppe = PSHAL(k2,7) in Derive message encryption key
let ko = PSHAL (NeesNse) In Compute token key from entropies
let Mypqe = HMACSHA1 (kyig, Myeq) in Message signature
let kepgorse = PSHAL(K o0 r,M7) in Derive a signing key from the issued token key
let M}y = HMACSHAL (kendorses Mmac) in Endorsing signature proving possession of token key
Service Request (Mo, s, Me> N7, Monetoks Service Request, with issued token, encrypted signatures and body

AESEnc (kenc s Mace ) ,AESEnc (k‘-’”f-' ’ M[’roof) ?
AESEnc (kene, Mreq))

RP: Accept Request (IP, claimsy, Myeg, Myesp) RP accepts request and authorizes a response
RP: generate fresh Mg, Mo Fresh nonces
RP — C :let kg, = PSHAL (k2,7g) in Derive message signing key
let kepe = PSHAL (K2, 19) in Derive message encryption key
let Mypqe = HMACSHA1 (kyig, Myesp) in Message signature
Service Response (T]g, Mo, Service Response, with encrypted signatures and body

AESEnc (kenc, Minac ), AESENC (kene, Myesp) )
C: Response (Myesp) C accepts response and sends it to application




InfoCard: modular reference implementation

CardSpace J } Windows
/\ CardSpace
Web Services
WS-Trust J Secure XML RPCJ Py
Protocols
WS-Security J Web Services
P e Messaging &
XML-Signature XML-Encryption J WS-Addressing Security
Crypto Patterns Principals J SOAP Generic
4 7 Protocol
\% /l Libraries
Crypto Db Xml Net

W Trusted
Libraries

Data



Verifying CardSpace

* We reviewed the protocol design
* We built a modular reference implementation

— For the three CardSpace roles: client, relying party, identity provider
— For the protocol stack: WS-Security standards & XML formats
— For the underlying cryptographic primitives



Evaluation
relative to FS2PV/ProVerif

Protocols and Libraries F# Program F7 Typechecking Fs2pv Verification
Modules | LOCs | Interface Time || Queries Time
Trusted Libraries (Symbolic) 5 926 * 1167 29s (Not Verified )
RPC Protocol 5+1 + 91 + 103 10s 4 6.65s
Principals 1 207 253 Os (Not Verified )
Cryptographic Patterns 1 250 260 17.1s (Not Verified )
Otway-Rees 2+1 +234 +255 | 1m 29.9s 10 | 8m2.2s
Secure Conversations 2+1+1 + 123 + 111 29.64s (Not Verified)
Web Services Security Library | 7 1702 475 48.81s (Not Verified )
X.509-based Client Auth 7+1 + 88 + 22 + 10.8s 2 20.2s
Password-X.509 Mutual Auth | 7+1 + 129 + 44 +12.0s 15 44m
X.509-based Mutual Auth 7+1 + 111 + 53 + 10.9s 18 5Im
Windows CardSpace 7T+1+1 + 1429 +309 | + 6m 3s 6 | 66m 21s*

Refinement typechecking is an effective, scalable

verification technique for security protocols




What about standard
crypto assumptions?
(concrete, probabilistic, poly-time)



Cryptographic primitives are partially specified

Symbolic models reason about fully-specified crypto primitives
— Same rewrite rules apply for the attacker as for the protocol
— Each crypto primitive yields distinct symbolic terms

Computational models reason about partially-specified primitives
(the less specific, the better)

— Positive assumptions: what the protocol needs to run as intended
e.g. successful decryption when using matching keys

— Negative assumptions: what the adversary cannot do
e.g. cannot distinguish between encryptions of two different plaintexts

Security proofs apply parametrically,
for any concrete primitives that meet these assumptions

Typed interfaces naturally capture partial specifications

— Many “computational crypto” type systems already exist,
sometimes easily adapted from “symbolic crypto” type systems



Computational soundness for F7

We rely on our existing F7 typechecker and code base

We adapt our language for probabilistic polynomial-time assumptions

We type protocols and applications against
refined typed interfaces for cryptography (automatically)

We relate several implementations of our interface (once for all)
— An ideal, well-typed functionality (much as symbolic libraries)
— A concrete implementation (not typable in F7)

— Intermediate implementations, to show computational soundness
by applying “code-based game-rewriting” onto F# code



HMAC & Int-CMA

Sample computational soundness
for keyed hash functions



Sample computational soundness:

Keyed cryptographic hashes

module Hmac

type key

type bytes = string .

type text = bytes p|a|n FH#
fype mac = bytes interface

val GEN: unit — key
val MAC: key — text — mac
val VERIFY: key — text —mac — bool

open System.Security.Cryptography

concrete F#
let rng = new RNGCryptoServiceProvider() . .
let randomBytes n = |mp|ementatl0n

let b = Bytearray.make n in rng.GetBytes b; Key b (Ca i ng . N ET)

let GEN () = randomBytes 32 (x 256 bits x)
let MAC (Key k) (r:text) =

base64 (new HMACSHAI(k)).ComputeHash (utfS t))
let VERIFY kt sv=(MAC kt=sv)



Sample computational soundness:

module Hmac KEVEd Cryptographic hashes
type key

type bytes = string )

type text = bytes “All verified “ideal” F7
type mac = bytes messages interface

type authentic = Msg of text

are authentic”

val GEN: unit — key
val MAC: k:key —r:text{Msg(t)} — mac
val VERIFY: k:key — t:text — m:mac — b:bool{ b=true = Msg(t)}

open System.Security.Cryptography

concrete F#
let rng = new RNGCryptoServiceProvider() 3 .
let randomBytes n = Implementat|0n

let b = Bytearray.make n in rng.GetBytes b, Key b (Ca | | | ng N ET)

let GEN () = randomBytes 32 (x 256 bits x)
let MAC (Key k) (r:text) =

base64 (new HMACSHAI(k)).ComputeHash (utfS t))
let VERIFY kt sv=(MAC kt=sv)

Can’t be true

(many collisions)




Cryptographic assumption: resistance against
Adaptive Chosen-Message existential forgery Attacks

Security 1s expressed as a game. We adapt a standard notion for
signatures [Goldwasser et al., 1988]. coded in F# as follows:

let CMA opponent =
let K = Hmac.GEN() in The opponent

let log =ref [] in _ can forge a signature
RUE RN SER e s EISUATOVER U only with negligible probability
let verify t m = Hmac.VERIFY kt m in
let (z.m) = opponent mac verify in

let forged = Hmac.VERIFY k t m && not(mem !log r)
assert (forged = false)

A PPT implementation Hmac (with parameter 1) 1s CMA-secure
when, for any PPT expression O, for all ¢ and sufficiently large n.

Pr[ Hmac (CMA O) is unsafe] <n™°



MACs: interfaces and implementations

a plain F#
interface

Hmac.fsi

Hmac —!m_ RPC

some concrete some sample
implementation protocol




MACs: interfaces and implementations

a plain F#
interface

Hmac.fsi

... and its refinements

cannot Hmac.fs7 RCP.fs7
typecheck in F7! [ |

Hmac —!m— RPC

some concrete some sample
implementation protocol




MACs: interfaces and implementations

a plain F#
interface

Hmac.fsi

... and its refinements

Hmacc.fs7 Hmac.fs7 RCP.fs7
Hmac —!m— RPC

some concrete some sample
implementation protocol




MACs: interfaces and implementations

a plain F#
interface

Hmac.fsi

... and its refinements

Hmacc.fs7 Cma.fs7 4 Hmac.fs7 RCP.fs7

|—| |_|
Hmac m CMA m RPC

some concrete some error some sample
implementation correcting wrapper protocol




MACs: interfaces and implementations

HMAC

CMA

RPC

PPT

Adversary

is indistinguishable from

HMAC

RPC

PPT

Adversary

is always safe
(by typing)

is safe too, with
overwhelming
probability



Verifying DKM,
a fresh data protection API

Case Study & Demo



Case Study: DKM

Exchange BPOS ‘
| Exehar secure rep05|tory m
<\Ia rge untrusted store Keys & Policies =
Mailboxes BPOS data

User’s DKM User’s DKM
encrypted
credentials

encrypted
session state

~ Exchange Server

DKM Client

e ——— ~
b

A new security API for securing data at rest
between multiple machines and multiple users/service accounts



-

\Case Study: DKM

o

—
y ‘ Exchange BPOS .
/ =1 w secure rep05|tory
] large untrusted store | Keys & Policies %
\ ’
D Mailboxes BPOS data
[ User’s DtKZA User’s DKM /’/
COeLy 'e encrypted
credentials sEssion Stite Exchange Server
DKM Client
-\ -
— \\_ 7

EEE——

DKM unburdens developers from many common tasks.

— Key management. The caller does not have to worry
about cryptography. The DKM library figures out which
key to use based on the specified group.

— Automated key update.

— Crypto agility.
DKM supports flexible policies for selecting crypto algorithms



-

y N\
Case Study: DKM
' Exchange BPOS - £ \_

e — secure repository il
- large untrusted store ! Keys & Policies

Mailboxes BPOS data

User’s DKM User’s DKM

encrypted encrypted

credentials sEssion Stite Exchange Server

DKM Client
~1
‘\_‘ :'7

DKM is largely deployed in Microsoft datacenters

We wrote together auxiliary reference code (aka specification)
We found and fixed serious flaws (early in the process)

We verified DKM once fixed (verification time: 17 s)



DKM Encrypted Email (Normal)

EXCH-REDMOND

M€ ‘ iﬂl’
DKM.dII —
\< %
secure repositoty
Cedric’s Mira’s
Keys & Policies Keys & Policies

Mailboxes \/

~_ Cedric’s DKM Mira’s DKM

encryr?ted encrypted
EXCH-EUROPE mal mil
DKM.dlI large untrusted store




DKM Encrypted Emall (Attack)

EXCH-REDMOND

o 5 M@ﬁ

secure repository




Verifying DKM
time ../../../../../../../inria/lang-sec/msrc/cvk/bin/f7.exe -nokindcheck --define f7
-pervasives ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pervasives.fs’7
-tuples ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/tuples.fs7
S/ /.. /.. /inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pi.fs7
S/ /o /.. /inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/list.fs7
db.fs7 var.fs7 CryptoModel.fs7 Acls.fs7 KeyPolicyModel.fs7 RepositoryModel.fs7 AuthEncModel.fs7
DKM.fs7 DKM.fs -scripts DKM | tee DKM.tc7 | egrep --color "ERROR|WARNING"
ERROR: failed type checking wval DKM.DkmUnprotect

Om9.863s

65590 2011-02-10 11:42 DKM.tc7
111421 2011-02-10 11:42 DKM.smp
8331 2011-02-10 11:41 DKM.fs

2940 2011-01-12 14:26 DKM.fs7

Verifying DKM
time ../../../../../../../inria/lang-sec/msrc/cvk/bin/f7.exe -nokindcheck --define f7
-pervasives ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pervasives.fs’7
-tuples ../../../../../../../inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/tuples.fs7
oS/ /o0 / .. /inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/pi.fs7
oo/ o/ ./ /. /inria/lang-sec/msrc/cvk/samples/lib/fs7-interfaces/list.fs7
db.fs7 var.fs7 CryptoModel.fs7 Acls.fs7 KeyPolicyModel.fs7 RepositoryModel.fs7 AuthEncModel.fs7
DKM.fs7 DKM.fs -scripts DKM | tee DKM.tc7 | egrep --color "ERROR|WARNING"

Om8.058s

819 2011-02-10 11:42 DKM.tc7
107561 2011-02-10 11:42 DKM.smp
8329 2011-02-10 11:42 DKM.fs

2940 2011-01-12 14:26 DKM.fs7



Joint Development & Verification
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Program in CH#

(production code)

S-G-FHIsD|2-0- 830 Y355 R iR =
TN s A Alackts® | achtsl & T x
B85 Mcronch incubanon. Crype Groupkoys Encrypthl. » 9 Aussartcstedl noryptctraam npat. Sresm cutgu » | |
' =3
on t
public override long AuthenticatedEncrypt(sStream in
{
Encrypt the contents and encode to output. .
long length = 0;
using ( encryptedcontent = new
(
he IV t begi g of the encr
encryptedf‘ontent Write (this.EncryptionAlgor
Encrypt the sage and encoc to output
u*)nq (ICryptoTx 4 encryptor = this.En
Il

o Schution DimVenfier (3 projects) »
_ Sabitsen Berrm

o) Dtmventer vaemd:
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' Propentie
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i Peterences
@ Crypre
@ 03 ONG
2] Agontheidentfiercy
2] AgonthmOd 3
&) Auhincryptcs

authent

icated enc

let authenticatedEncrypt p n iv k plaintext =
let ke,km = deriveKeys pn k
match AuthEncMethod p with
| AuthEncryptcM ->

encrypt p.EncryptionAlgorithm iv ke plaintext

| EncryptThenMac ->
let @ =
let v = concat iv e
expect

let m = mac p.MacAlgorithm km v

concat e m

MacZhenEncrypt ->

t m = mac p.MacAlgorithm k= plaintext

t v = concat plaintext m

encrypt p.EncryptionAlgorithm iv ke g

(IsEncryptThenMac (v, k,p,n,plaintext, ke

(IsMacThenEncrypt (v, k,p,n,plaintext, kx

SoMtion DomVerfier (3 progects) «
L Schunon Rems

EncryptionAlgor]

Model in F#

(reference code)

He [dt Yew Projet Boid Deduy Dpte Joos Te Asslae Window Lep
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_DRMARD 8 EncpMAC e :

val AuthenticatedEncrypt:
ae:MyAuthEncrypt ->
(t:bytes{ !k,p.
Val (ae.Key, k) /\
Val (ae.Policy,p) =>
InStream ->
pubs OutStream -> inté4

Protect (k,p,t) ))

val AuthenticatedDecrypt:

ae:MyAuthEncrypt -> pubs InStream ->
(text:bytes |

?p, k. Val(ae.policy,p)

/\ APP(k,p,text) })

/\ Vval (ae.Key, k)
OutStream -> inté4

Verify F# using F7

(automated) u-
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Test C# vs Fit

~ 7 | (unit + interoperability)
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The DKM Codebase

| IRepository E3
Interface

Properties

= Metheds

| KeyPolicy ®
Class
Fields
= Properties
1 AuthEncMethod
= CurrentKeyGuid
iy EncrypticnAlgerithm
' KdfMacAlgorithm
B KeyLifetimelnDays
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Methads
MNested Types
Class
( IKeyCache 63
Interface
( MemoryKeyCache E3
Class

CC QT O T CC OO OO A

AdaGroupMemberVithDefa...

AdgdGroupMemberiVithUpd..,
AddGroupOwner
CregteGroupContainer
CreateleyObject
CreateTopContainer
EnumerateKeys

ReadKey

ReadPolicy

RefreshPolicy
RemoveGrounContainer
RemoveldentityFromGroup
RemoveKeyObject
RemoveTopContainer
WriteDefauitPolicy
WriteKey

WritePolicy

| IDKM =
Interfa
S IAuthEncrypt = Crypto B3 Algorithmldenti... (%
Interface Class Class
= Properties
B Decodedrolicy = Properties Fields Fields
3 GroupMName .
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' Repository ) )
: P EncryptionAlgorithm S]—— ' Mode
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® Clear B Method W CreateHashAlgorithm = Fadding
- : . =
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@ Protect 2" Crypio 5% Decode (+ 2 ov..
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& ReadPolicy % DerivekeySPB00_108 ¥ Encode
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¥ Decode 3% GetDefaultlgorithm e Ok =3
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Class Class Class I @ Sharse 1
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Crypto Agility?

Encrypt(Policy, key)
— Legacy systems:
data must be accessible in 10+ years
even if protected by weak algorithms!
— Plug-and-play cryptography:
algorithms get broken & replaced

* Encrypt: BES; 3DES; AES-128; AES-256 ...
 Hash: MB5; SHA-1; SHA-256; SHA-512; SHAS ...



Production code
relying on crypto

can be verified

New tasks:
— Write reference code in F#

— When using non-standard crypto,
adapt F7 verification libraries

Verification is fast & automated
— Part of the build/test process

C# ~ 20,000

F# 1,447

F7 855
| e | Ewm

Build 3m

+ unit tests

Verify (F7) 17 s



Summary

® \We verify crypto protocol implementations
by refinement typechecking

e Verification is modular

® We use abstract types and refinements to control the usage of
cryptography
e Except for the crypto libraries, proofs are automated & fast

e Applied to full-fledged implementations
of industrial standards and protocols

® This talk: integrity properties

® Active adversaries range over programs with access to specially-crafted
interfaces that account for potential partial compromise

e Verification is cryptographically sound, both symbolically and
computationally

® Omitted: secrecy properties

® Our approach and libraries are language-independent (in principle)
® So far we use mostly F# & F7



Questions?

® \We verify crypto protocol implementations
by refinement typechecking

e Verification is modular

® We use abstract types and refinements to control the usage of
cryptography
e Except for the crypto libraries, proofs are automated & fast

e Applied to full-fledged implementations
of industrial standards and protocols

® This talk: integrity properties

® Active adversaries range over programs with access to specially-crafted
interfaces that account for potential partial compromise

e Verification is cryptographically sound, both symbolically and
computationally

® Omitted: secrecy properties

® Our approach and libraries are language-independent (in principle)
® So far we use mostly F# & F7



